События, о которых мы расскажем, готовились исподволь, незаметно и медленно, в течение ста с небольшим лет, а переворот, который они совершили в естествознании, обрушился на научный мир с ошеломляющей быстротой.

Эндокринология, наука о высокоактивных химических веществах, обеспечивающих поддержание гомеостаза (постоянства внутренней среды) на строго определенном уровне, оптимальном для жизнедеятельности, сравнительно молода. Ей скоро исполнится 190 лет. Но за этот срок она пережила немало: в ее истории были периоды расцвета и упадка. Четыре раза она приносила в биологию и медицину открытия, кардинально меняющие, казалось бы прочно устоявшиеся, взгляды. В "личном деле" эндокринологии немало удивительных документов. Со многими из них мы познакомимся.

Девятнадцатый век оказался щедрым для науки и искусства. Научная мысль и художественное творчество не уступали друг другу в гениальных открытиях, великих произведениях, талантливых собратьях. Менделеев и Чайковский, Лобачевский и Гюго, Бэр и Достоевский, Бутлеров и Репин… Биология и медицина тоже не остались в стороне. В то время жили и плодотворно работали Павлов и Мечников, Сеченов и Вирхов, Мендель и Пастер, многие другие выдающиеся естествоиспытатели.

Буйная фантазия экспериментаторов не знала границ. Ставились опыты, проведение которых еще незадолго до этого считалось абсурдным и невозможным. Развитие технической мысли не могло не сказаться на биологии. Появились более сильные микроскопы, различные приспособления для физиологических и биохимических исследований, и, как результат этого, - новые открытия и факты. Развитие хирургической техники предоставило возможность проведения новых экспериментов.

В один из весенних дней 1902 года молодые биологи В. Бейлис и М. Старлинг из Лондонского университета провели эксперимент, которому суждено было стать важной вехой в дальнейшем развитии эндокринологии.

События выдающегося для науки значения протекали очень буднично. Английские исследователи не изобретали ничего нового, они просто повторяли опыты, которые раньше провели независимо друг от друга два физиолога - ученик Павлова Л. Попельский в России (1896) и М. Вертхаймер во Франции (1901). Все четверо ученых получили одинаковые результаты, но правильно интерпретировать их смогли англичане, а именно в верном толковании данных лежало начало второго рождения эндокринологии.

Много лет спустя в одной из своих статей Старлинг писал: "…учеником Павлова Попельским и независимо Вертхаймером было установлено, что при введении кислоты в петлю тонкой кишки возникает выделение поджелудочного сока даже в том случае, если перерезаны оба блуждающих нерва и разрушены симпатические узлы.

После открытия Бейлисом и Старлингом секретина различные ученые обнаружили гормоны во многих железах. Изучение их долгое время базировалось на исследовании экстрактов и вытяжек. Химическое строение было установлено значительно позже. Так в относительном спокойствии и сосуществовали две теории регуляции: нервная и гормональная. Причем примат нервной сомнению не подвергался, так же как и электрофизиологический принцип ее деятельности. Но наступил 1921 год…

Австрийский фармаколог Отто Леви открыл медиаторный механизм передачи нервного импульса от одной клетки к другой и с нервного окончания на эффекторный (рабочий) орган. Он установил, что при прохождении по волокну нервного возбуждения, в основе которого лежит электрофизиологический процесс, в синапсе - месте контакта волокна с другой нервной клеткой или с клетками различных органов - образуются гормональные вещества с высокой химической активностью, без которых невозможно возникновение определенных физиологических реакций. Эти вещества получили название медиаторов и заложили первую трещину в массивное здание, до этого прочно стоявшее на непоколебимом фундаменте электрофизиологических основ нервной регуляции.

Почти до середины XX столетия цитология и гистология (науки о строении клеток и тканей) носили описательный характер. Благодаря многочисленным исследованиям тонких срезов различных тканей и органов, окрашенных специальными красителями, с помощью микроскопа были получены важные данные об анатомии различных органов. Но этого оказалось недостаточно, необходимо было понять функцию клеток, как протекают в них химические процессы, - и параллельно с развитием биохимии стали формироваться и совершенствоваться гистохимические методы исследования. Они превратили гистологию в науку функциональную, стало возможным одновременно изучать структуру и функции клеток и тканей. С появлением электронного микроскопа, позволявшего достигать увеличения объектов в тысячи и даже в миллион раз, возможности в познании живой материи значительно расширились.

В каждой лаборатории, занимающейся гистохимическими и электронно-микроскопическими исследованиями, обязательно есть какое-либо из трех, а может быть, и все издания самого полного руководства по гистохимии, написанного известным английским патологом А. Пирсом. Успех и авторитет этого руководства заключены в том, что автор не просто собрал множество различных методических приемов обнаружения тех или иных веществ в клетках, но апробировал большинство из них в своей лаборатории, модифицировал и рекомендовал коллегам наиболее удобные, доступные и адекватные задачам гистохимические методы.

Любой сыщик знает: для успешной слежки надо сделать все, чтобы объект себя обнаружил. Так и в нашей истории - многие успехи эндокринологии последних лет связаны прежде всего с разработкой надежных способов идентификации гормонов.

Рассказывая об открытии Пирсом функции светлых клеток, мы упомянули имя американского ученого Альберта Кунса - основоположника применения в гистохимии иммунологических методов. Иммуногистохимический метод оказался особенно перспективным для исследования синтеза и транспорта гормонов. Поскольку при введении гормонов организм начинает вырабатывать специфические белки - антитела, то, введя животному (чаще всего используют кроликов и морских свинок) какой-либо гормон, можно впоследствии взять кровь этого животного, в которой будут содержаться антитела именно к данному гормону, после специальных процедур получить антисыворотку и затем использовать ее для обнаружения в клетках и тканях того самого гормона.

Казалось, с появлением иммуногистохимического метода проблема обнаружения гормонов в организме должна быть решена. И действительно, за время, прошедшее после 1941 года, когда Кунс впервые предложил метод, было открыто много мест синтеза гормонов и изучены разные стороны их обмена в живом организме. Однако, появились и свои ограничения, связанные, с одной стороны, с недостаточной чувствительностью метода, а с другой - с потребностью изучения гормонов не только в клетках, но и в крови, доступной для массовых исследований в клинической практике. Эти препятствия были преодолены с разработкой радиоиммунологического метода определения гормонов.

Когда мы входим в зал перед началом симфонического концерта, мы прежде всего слышим тихую разноголосицу настраиваемых инструментов. Через несколько минут громко и стройно зазвучит весь оркестр. У каждого инструмента своя партия, своя роль и значение в исполнении произведения. У одного более значимая, у другого - менее, но потеря любого из них приведет к утрате полноты и красоты звучания всего оркестра, а значит, и самой симфонии.

Так и в организме. Эндокринные клетки, расположенные в разных органах и продуцирующие различные гормоны, составляют оркестр. Оркестр, исполняющий симфонию жизни. От согласованности их действий, синхронности и четкости ведения своих партий, сыгранности всех участников большого ансамбля зависит качество исполнения этой трудной и ответственной симфонии.

Клетки и вырабатываемые ими гормоны - это инструменты эндокринного оркестра. Ими руководит очень опытный и строгий дирижер - гипоталамус, пульт его находится в основании головного мозга. Его правая рука, верный помощник, проводник всех его идей и стремлений - гипофиз, лежащий под полушариями мозга тоже на его основании в специальном месте - четверохолмии, образующем углубление для этого важного органа. Гипофиз связан с гипоталамусом системой специальной связи: нервными волокнами и кровеносными сосудами.

Гипофиз - первая скрипка, концертмейстер оркестра. Он многозвучен - очень разносторонний музыкант. Вырабатывая около 10 важных гормонов, гипофиз практически ведет за собой все другие инструменты оркестра: щитовидную и поджелудочную железы, надпочечники, яичники, другие органы.

Рост человека - величина непостоянная. Он прогрессивно увеличивается до 25 лет, сохраняется неизменным примерно до 60 лет, после чего уменьшается на 2-3 сантиметра к 70 годам. Кроме того, показатели роста варьируют у разных людей. Однако для "условного человека" (такой термин принят Всемирной организацией здравоохранения при определении различных параметров жизнедеятельности) средний рост достигает 160 сантиметров у женщин и 170 - у мужчин. А вот цифры ниже 140 и выше 195 сантиметров - это уже патология, и связана она с нарушением синтеза гормона роста - СТГ.

Впервые предположение о наличии в гипофизе специфического гормона роста было высказано в 1921 году американскими учеными X. Эвансом и Г. Лонгом. Им удалось стимулировать рост крыс до размеров, вдвое превышающих обычные, путем ежедневного введения экстрактов гипофиза. В 1964-1968 годах в серии сложных экспериментов С. Ли сумел выделить СТГ в виде очищенного препарата сначала из гипофизов быка (переработав при этом примерно 200 тысяч гипофизов), затем лошади и человека. Оказалось, что гормон роста обладает видовой специфичностью.

Во фразу, пришедшую к нам из древности, вложен глубокий смысл: со щитом - значит с победой, на щите - с поражением.

В организме тоже есть свой щит, надежно защищающий его от всяких невзгод. Если он крепок - в организме все в порядке, если что-то произошло и в щите появилась трещина - жди беды, появляются нарушения деятельности различных систем. Что же это за щит, страж нашего организма? Нетрудно догадаться, тем более, что название органа говорит само за себя: щитовидная железа. Так назвал ее в 1656 году Т. Вартон.

Щитовидная железа известна анатомам и врачам еще с глубокой древности. Мнения о ее роли господствовали самые разные. От суждений Галена о том, что этот орган является частью голосового аппарата, а итальянского патолога Дж. Морганьи и других известных ученых XVIII века о выработке ею особых "смазывающих" веществ до суждений о ней как о сосудистом барьере, препятствующем избыточному поступлению крови в мозг, и, наконец, как об образовании, созданном богом для украшения шеи!

Щитовидная железа не только надежно охраняет организм от всяких невзгод, но служит настоящим щитом по отношению еще к одному важному эндокринному органу - паращитовидным железам. Небольшие по размеру (у человека 3-8 миллиметров в длину, 2-5 миллиметров в ширину и 0,5 - 2 миллиметра в толщину), они лежат под щитовидной железой на задней ее стенке. Чаще всего их четыре, но иногда может быть две или больше четырех. Есть сообщения об обнаружении даже 12 паращитовидных желез. Общий вес четырех желез не превышает 0,3 грамма. Но вес и размеры вовсе не отражают роль и значение того или иного органа. Помните, в сказке, "мал, да удал"? Так вот, паращитовидные железы действительно обладают очень нужной функцией. В них продуцируется два жизненно важных гормона: пазатгормон и кальцитонии. Являясь антагонистами, они регулируют фосфорно-кальциевый обмен.

Есть органы, функция которых ясна сразу, их работа на виду. Например, сердце, легкие, почки. А функция некоторых органов долгое время оставалась загадкой. Ученые понимали, что природа ничего просто так не создает, раз какой-то орган существует, значит, он необходим и его роль нужно выяснить. Она может иметь большое значение в жизнедеятельности всего организма.

Одним из самых загадочных органов долгое время оставался тимус - вилочковая железа, названная так из-за своей двурогой формы. Она лежит за грудиной и обладает удивительным свойством. У новорожденных детей - очень крупная, весит 15 граммов (то есть, если принять средний вес младенца за 3 килограмма, то масса вилочковой железы составит 0,5 процента веса тела), а у взрослого сорокалетнего человека вес этой железы не превышает 3 граммов (0,005 процента веса тела). Получается, что с возрастом масса тимуса уменьшается в 100 раз. Действительно, у взрослых людей этот орган настолько атрофируется, что практически совершенно незаметен при патолого-анатомических исследованиях. Такой метаморфозы не происходит ни с одним органом. В чем же тут дело?

Этот раздел сайт - не учебник эндокринологии. И  цель ее не анализ функций каждой эндокринной железы или АПУД-клеток, расположенных в различных органах, а демонстрация разнообразия картины увлекательного поиска ученых в изучении систем регуляции жизненных процессов. Такая постановка вопроса может повлечь за собой упрек автору в том, что он отдает предпочтение одним гормонам и пренебрегает другими. Что ж, упрек справедлив. Более того, автор делает это умышленно, выделяя открытия, кажущиеся ему наиболее перспективными и значимыми, во-первых, потому, что, как и в любой науке, в истории эндокринологии разные события имели неодинаковые последствия, а во-вторых, потому, что существующие учебники и справочные руководства с успехом восполнят "пробелы", если главная наша цель будет достигнута - и у читателя возникнет интерес к той науке, о судьбе которой идет речь.

Тем не менее для краткой информации расскажем еще о некоторых инструментах эндокринного оркестра, партии которых вносят ощутимый вклад в общее звучание.

Если бы можно было заглянуть в головной мозг, то в геометрическом его центре вы увидели бы… маленькую еловую шишку. Да, именно так выглядит эпифиз - особый эндокринный орган, весящий у человека всего 0,1 грамма. Четыре тысячи лет назад древние индийские йоги дали ему название "шишковидная железа", считая, что он предназначен для ясновидения и размышлений о прежних воплощениях духа. Французский философ Р. Декарт написал в XVII веке об эпифизе трактат, в котором объявил его "вместилищем души".

Размеры эпифиза у человека невелики, всего 3-4 миллиметра в диаметре. У животных и того меньше. У крыс и мышей при экспериментах его приходится извлекать (причем с трудом) только с помощью сильной лупы. Казалось бы, такой маленький орган не должен играть какой-либо значимой роли в организме, однако открытие в последние годы одной из сокровенных тайн этой железы свидетельствует как раз об обратном.

Функции эпифиза долгое время оставались неясными, пока в конце 50-х годов нашего столетия американский дерматолог А. Лернер, занимающийся поисками эффективных косметических осветляющих средств для лечения пигментных дерматозов, ни обратил внимание на вышедшую еще в 1917 году статью английских ученых К. Мак Корда и Ф. Аллена, в которой сообщалось о просветлении окраски тела головастиков при кормлении их экстрактами эпифиза.

Это сообщение очень заинтересовало Лернера, Он привлек к работе своей лаборатории известного американского биохимика Дж. Аксельрода, и совместными усилиями группа биохимиков, дерматологов и эндокринологов, переработав десятки тысяч шишковидных желез крупного рогатого скота, получила несколько граммов вещества, обладающего мощным осветляющим кожу лягушек действием. Так был открыт новый гормон - мелатонин, название которому было дано по присущему ему вышеописанному свойству. Мистическая роль эпифиза была разгадана, а Дж. Аксельрод удостоен в 1970 году Нобелевской премии.

Дело в том, что в червеобразном отростке содержится наибольшее число всех ЕС-клеток желудочно-кишечного тракта - 75-80 процентов. Прикинули, что для получения минимального количества очищенного экстракта слизистой оболочки червеобразного отростка, в котором можно было попытаться обнаружить мелатонин, необходимо 300-500 аппендиксов. Где их взять? Как сохранить в них гормон в неизмененном виде, если он там есть? Обратились к хирургам. В больницах, дежуривших по оказанию экстренной хирургической помощи, были оставлены контейнеры с жидким азотом, позволяющим замораживать ткань до температуры минус 190 градусов. В них врачи помещали удаленные червеобразные отростки. 350 аппендиксов (можно было бы собрать и больше, но не хватало терпения для оценки нашей идеи) послужили материалом для первой проверки предположения о синтезе мелатонина в ЕС-клетках. Путем соответствующих специальных процедур получили несколько миллилитров экстракта, в котором, на наш взгляд, должен был содержаться мелатонин. А дальше повторили классический опыт Лернера и Аксельрода: взяли двух лягушек, одна служила контролем, а второй в лимфатический мешок ввели заранее простерилизованный экстракт.

Последующие исследования, проведенные в нашей лаборатории, показали, что мелатонинпродуцирующие клетки есть и в других органах: печени, почках, поджелудочной железе, надпочечниках, вилочковой железе, симпатических ганглиях и т. п. Интересные данные были получены В. Гуляевым и Р. Манохиной. Они установили присутствие мелатонина и некоторых других гормонов (серотонина, гистамина, инсулина, катехоламинов) в эндотелиальных клетках сосудов. Обнаружение мелатонина и других химически активных веществ в стенке сосудов является отражением существования местного механизма непосредственного изменения концентрации гормонов в кровеносном русле конкретного органа. Такой механизм физиологически оправдан. Посредством его обеспечивается необходимое биологическое действие гормонов в кратчайший срок именно на те функциональные звенья, включение которых необходимо в определенной сложившейся ситуации.

Одним из частных нарушений суточного ритма является бессонница. Человек при этом испытывает не только тягостные неприятные субъективные ощущения. Наступает так называемый десинхроноз - тяжелое болезненное состояние, характеризующееся утомляемостью, нервозностью, сердцебиением и другими патологическими проявлениями. Поиски эффективных методов лечения нарушений сна и бодрствования продолжаются уже несколько веков. Различные способы базируются на разных теоретических подходах к выяснению природы сна - важнейшего биологического процесса (ведь из 60 лет жизни человек в среднем спит 20 лет, из них 5 лет проводит в сновидениях). Зачем нужен сон, в той или иной мере известно всем - для восстановления сил, отдыха организма. Подчеркнем - отдыха активного: во сне совершаются важные физиологические и психологические процессы. Создатель кибернетики Н. Винер писал: "…наилучший способ избавиться от тяжелого беспокойства или умственной путаницы - переспать их".

Являясь универсальным регулятором биологических ритмов, мелатонин, естественно, контролирует течение многих физиологических процессов. Однако наиболее интересной и, на наш взгляд, важной является его способность снижать скорость и уровень пролиферации клеток, то есть их деления, роста, развития и дифференцировки. В эксперименте было замечено, что мелатонин обладает антиопухолевым действием. В литературе имеются сообщения о снижении темпов роста опухолей под действием искусственной темноты, что связано с возрастанием продукции мелатонина в организме. Наши исследования показали, что на ранних стадиях развития опухолей концентрация мелатонина в сыворотке крови онкологических больных возрастает в 1,5-2 раза по сравнению с нормой, резко снижаясь при метастазировании опухолей. И. Левин установил также, что при раковых опухолях у больных изменяется уровень суточной экскреции мелатонина. Наряду с другими клиническими и лабораторными данными эти тесты могут служить дополнительным информативным признаком для своевременной диагностики опухолей.

А теперь давайте помечтаем… Тем более что роль эпифиза до конца не разгадана. Есть еще одна (может быть, самая важная) его загадка. Связана она с гипоталамусом - центральным органом управления эндокринной системой. Ученые установили, что на протяжении жизни активность его нарастает (это генетически запрограммировано). По современным представлениям, процессы старения, возрастные серьезные сердечно-сосудистые расстройства, опухолевый рост и даже сама биологическая смерть - результат достижения гипоталамусом определенного порога своей активности. Известный патолог академик И. Давыдовский в одной из своих работ даже писал: "…в принципе каждый человек когда-либо должен был бы умереть от рака, однако просто не все доживают до своего рака". Математический анализ показал, что активность гипоталамуса могла бы достичь своих критических (губительных для организма) величин не к 70 и более годам, а гораздо раньше. Что же противодействует ей в организме? Где расположены часы, отсчитывающие, образно говоря, продолжительность человеческого существования? Высказывается предположение, что… в эпифизе.

Кленовый лист - символ Канады. Клены встречают вас на улицах и площадях, бульварах и скверах, парках и чемоданных бирках в аэропортах, на государственном флаге, почтовых открытках и официальных бумагах. Ранней весной нежно-зеленая, в разгар лета более сдержанная, кленовая листва осенью буйно расцвечивается от буро-зеленых до красных и бордовых тонов.

По длинной кленовой аллее ранним утром идет немолодой человек. Он идет к своему детищу. Оба имеют прямое отношение к науке. Оба известны не только в ученом мире, но и среди весьма далеких от науки людей. Это бывает лишь тогда, когда сделанное вышло далеко за рамки узкой специальности. В данном случае так и произошло.

Издавна клинические лекции в медицинских вузах сопровождаются демонстрацией больных. Практика - лучший учитель. Так было заведено и в Немецком универститете в Праге на лекциях по внутренним болезням, которые в 1925 году слушал 18-летний студент-медик Ганс Селье. Профессор, читавший лекции, демонстрировал больных различными заболеваниями и при этом отмечал у каждого бледность кожных покровов, жалобы на боли в суставах, потерю аппетита, веса, желудочно-кишечные расстройства и т. п. Молодого Селье заинтересовало - почему у разных больных, страдающих совершенно непохожими заболеваниями, присутствуют признаки, неспецифические для какой-либо конкретной патологии, но не встречающиеся у здоровых, а значит, свидетельствующие о нарушении здоровья.

Маститый профессор, которому Селье задал этот вопрос, ответил просто: "Не стоит обращать внимания на подобные мелочи". Типичный пример того, что, видимо, во все времена существуют ученые, считающие, что легче снять вопрос как несущественный, чем попытаться ответить на него. Однако впечатления молодости особенно ярки, и мысль о том, как совершенно различные болезнетворные агенты вызывают сходные неспецифичеческие нарушения, не покидала будущего великого патолога. Но только через 10 лет, в 1935 году, Селье смог приступить к выяснению этого вопроса.

По данным Всемирной организации здравоохранения, процессы урбанизации неуклонно ведут к росту психических заболеваний. Среди них одно из первых мест занимает маниакально-депрессивный психоз, при котором периоды глубокой депрессии чередуются с периодами возбуждения, необузданной радости и возвышенного настроения. Кроме официально зарегистрированных больных, немало людей в той или иной степени страдают меланхолией. Да и каждому из нас в различные периоды своей жизни приходилось испытывать и чувство разочарования, утраты надежд, и ощущение подъема духовных и физических сил.

Что же лежит в основе изменения психоэмоционального состояния? Раньше считали, что эти процессы в основном регулируются уровнем секреции норадреналина клетками мозгового вещества надпочечников. Действительно, чем выше концентрация норадреналина в организме, тем человек более склонен к отрицательным эмоциям.

Казалось бы, простой вопрос: зачем человеку и животным нужны обонятельные луковицы - особые образования в передней части мозга? Такой же простой ответ - чтобы различать запахи. Возникает следующий вопрос: а зачем живому существу различать запахи? Следует ответ - чтобы определять свое поведение. Правильно? Да, несомненно. Запахи имеют большое значение в формировании поведенческих реакций. Особенно это заметно у грызунов. У них в контактах друг с другом и иными животными запахи играют наверняка не меньшую роль, чем словесное общение у людей. Свидетельство тому - опыт, описываемый в учебниках по физиологии: если нанести несколько капель кадаверина - вещества, выделяющегося при разложении крысиных трупов, на дощечку и подкинуть ее в клетку с крысами, животные тут же начнут тщательно закапывать этот предмет, как поступают с умершими собратьями. Отсюда, надо полагать, следует, что если животных лишить обонятельных луковиц, они не будут знать, как себя вести, что делать, перестанут есть и умрут?

Эмоции отражают состояние души. Боль - состояние организма. Горькие эмоции влекут за собой боль, а боль всегда проявляется в эмоциях. Мы только что говорили о том, что природа позаботилась о регуляторах эмоций. Неужели, заложив в организме формирование болевых ощущений, природа не создала "контролеров", регулирующих степень выраженности их проявления? Оказывается, создала. Последние открытия нейрофизиологов показали: прямое отношение к боли имеют две группы пептидов - вещество Р и эндорфины.

Вещество Р известно сравнительно давно. Его открыли в 1931 году американские ученые У. Эйлер и Дж. Гаддум. Свое название (которое не отражает никаких биологических свойств этого пептида) оно получило от английского слова "power" - порошок. А вот эндорфины были названы так из-за своего действия - ЭНДогенные мОРФИНЫ.

Джонатан Свифт, наверное, даже не мог подозревать, что в своей книге "Приключения Гулливера" он замечательным образом предвосхитит эксперименты, которые даже сейчас, в конце XX века, с его невиданным научно-техническим прогрессом, кажутся фантастическими. Вспомним эпизод посещения Гулливером академии в Лагадо, где гостеприимные хозяева продемонстрировали гостю новый метод введения информации в человеческий мозг. Он состоял в скармливании школьникам специально подготовленных тетрадей с конспектами. Правда, опыт не всегда, по их словам, удавался, потому что ученики умудрялись выплевывать "знания". Но авторы данного способа были полны оптимизма, считая, что единственной проблемой является изготовление из этих тетрадок особых пилюль памяти.

Каждый из нас с интересом читал страницы увлекательной книги, но не мог даже думать о том, что создание "пилюль памяти" превратится из веселой выдумки в реальность наших дней. Только вместо крошечных страниц убористого текста в них надо будет вводить химические вещества, опять же пептиды - небольшие молекулы, которые могут творить чудеса - облегчать запоминание, стимулировать обучение и даже переносить конкретные навыки.

В начале 60-х годов ХХ века многие иностранные журналы сообщили о "сенсации века" - канадский нейрофизиолог М. Мак Коннел установил факт переноса поведенческих навыков от обученных к необученным животным с помощью экстрактов мозговой ткани. Объектом исследования Мак Коннела явились ресничные черви - планарии. Именно на них он со своими сотрудниками решил проверить гипотезы, высказанные одновременно (но независимо друг от друга) в 1948-1950 годах французом А. Монне, австрийцем Г. фон Фоэсетром, американцами А. Катцем и В. Хальстедом о том, что следы прошлого опыта животного кодируются в его макромолекулах.

Мак Коннел остановил свой выбор на планариях не случайно. Эти черви успешно поддаются выработке условных рефлексов, быстро регенерируют при перерезке и обладают тесными связями между клетками их пищеварительного тракта (способными к включению нерасщепленных гипотетических информационных молекул) и нейронами.

В пушкинской сказке рыбка-волшебница, одаривавшая старика всем, что он пожелает, в конце концов рассердилась и оставила его ни с чем. В нашем рассказе - наоборот, золотые рыбки выполняли любые желания экспериментаторов: они плавали вверх животом, подплывали к любимой красной и нелюбимой зеленой кормушкам, учились различать запахи хинина, глюкозы и уксусной кислоты с предпочтением какого-то из них. И все эти приобретенные навыки переносились с экстрактами мозговой ткани обученных животных к необученным. Наступила эра триумфа! В 1965 году сразу четыре группы исследователей из США, Дании и Чехословакии сообщили, что внутрибрюшинное введение крысам и мышам мозговых экстрактов, взятых от обученных животных, значительно облегчало и ускоряло выработку тех же навыков у необученных. Интересно, что в ходе опытов, например связанных с обдуванием крыс воздухом, к которому они привыкали, было показано, что факторы переноса сохраняют свою активность и при воздействии ими на животных другого типа. Так, экстракты мозга, взятые у крыс, привыкших к обдуванию, при введении их мышам "приучали" последних безразлично относиться к этой процедуре.

Потратив шесть лет упорной работы, Дж. Унгар и его группа сообщили в 1972 году в английском журнале "Nature" ("Природа") о первом успехе: из мозга крыс, обученных бояться темного отсека камеры, было выделено "вещество памяти". Расшифровка его химической структуры показала, что это пептид с маленьким молекулярным весом, цепочка которого состоит всего из 14 аминокислот. Его назвали скотофобином (в переводе с греческого - боязнь темноты). Скотофобин в очень низких дозах (от 10 до 300 нанограммов) при введении его в организм животных специфически индуцировал у них страх перед затемненным пространством.

Окрыленный успехом, Унгар выдвинул тезис "один пептид - один акт поведения". Под этим девизом он со своими сотрудниками стал заниматься поиском других пептидов памяти. Искал… и нашел.

Выработав у 600 крыс привыкание к звуку электрического звонка, группа Унгара выделила и расшифровала вторую чудесную молекулу - пептид, названный амелитином (в переводе с греческого - безразличный). Подобно скотофобину, амелитин при его введении в очень малых дозах вызывал у необученных крыс отсутствие каких бы то ни было ответных реакций на звонок.

Диана Десидерио, ученица Джорджа Унгара, итальянка по происхождению - молодая обаятельная женщина. Познакомившись с ней и будучи очарованным ее молодостью, красотой и какой-то неутомимой жаждой познания, профессор предложил ей заняться вместе с ним поиском гормонов памяти. Долго уговаривать Диану не пришлось, она, в свою очередь, была поражена захватывающим сюжетом идеи и личностью самого исследователя.

В лаборатории Дж. Унгара работали практически круглые сутки. Все сотрудники, воодушевленные идеей поиска вещества памяти (а она действительно была заманчивой), трудились с утра до поздней ночи. Однако необходимо было не только "работать руками", но и осмысливать, обсуждать полученные результаты. Общеизвестно удивление Э. Резерфорда, постоянно застававшего одного из своих сотрудников за проведением опытов. "Когда же вы думаете, молодой человек?" - спросил великий физик своего ученика. Так вот, думали в лаборатории Унгара вечерами по четвергам. И если сам шеф был головой, разумом этих раздумий, то душой их, несомненно, была Диана Десидерио.

Яндекс.Метрика Top.Mail.Ru