Знаменитый эволюционный эксперимент на бактериях, начатый Ричардом Ленски в 1988 году, продолжает приносить интересные и порой неожиданные результаты. С начала эксперимента сменилось уже более 70 000 поколений подопытных бактерий Escherichia coli (у людей на это ушло бы около двух миллионов лет). Казалось бы, все возможные полезные мутации за это время должны были у бактерий закрепиться, но нет, микробы в колбах у Ленски продолжают накапливать полезные мутации. Их приспособленность к неизменным условиям эксперимента неуклонно повышается. И хотя она растет уже не так быстро, как в начале эксперимента, рост не собирается выходить на плато, как ожидали многие эксперты. В шести из двенадцати популяций закрепились мутации, резко повысившие темп мутагенеза, что лишь ускорило рост приспособленности, несмотря на то что от мутаций, как известно, в среднем намного больше вреда, чем пользы.

«Ландшафт приспособленности» — это воображаемый график, показывающий, как зависит функциональность гена от его нуклеотидной последовательности (или работоспособность белка от его аминокислотной последовательности). Биологи привыкли считать ландшафт приспособленности абстракцией, полезной для теоретических рассуждений, но недосягаемой для реального изучения. Однако стремительное развитие биотехнологий уже позволяет картировать небольшие области ландшафта приспособленности конкретных белков. Американские биологи экспериментально изучили свойства всех возможных аминокислотных комбинаций, занимающих четыре ключевые позиции в одном из белков кишечной палочки. Неожиданно оказалось, что из 160 000 комбинаций работоспособны целых 1659 (более 1 %). При этом эволюционные маршруты от одних «разрешенных» последовательностей к другим, как правило, оказываются длинными и окольными. Это связано с сильным эпистазом — зависимостью пользы мутации от того, какие мутации успели закрепиться раньше. Иными словами, важно не только само появление тех или иных мутаций, но и порядок их появления. Возможно, из-за эпистаза эволюция не может найти многие удачные решения, а ее пути становятся до некоторой степени предсказуемыми.

Эволюция не останавливается, организмы приспосабливаются к среде обитания все лучше и лучше даже при неизменных условиях. Но этого мало: даже самая простая среда с точки зрения эволюционирующих в ней организмов оказывается весьма сложной, предоставляющей много альтернативных возможностей. Какой из них следует воспользоваться? Это уж как получится. Одни особи могут повышать приспособленность, подстраиваясь под одни факторы среды, другие — под иные. При этом обе группы, меняясь, неизбежно будут менять и среду обитания друг для друга, и к этим изменениям тоже придется приспосабливаться. В итоге изначально однородная популяция может разделиться на две взаимозависимые, нуждающиеся друг в друге части. Возможно ли такое наблюдать? Оказывается, да. И это еще один замечательный, вполне логичный, хотя и непредвиденный результат долгосрочного эксперимента Ленски, обнародованный в 2017 году. Здесь речь идет о 60 000 поколений.

В ходе исследования выяснилось, что за это время как минимум в девяти популяциях из двенадцати произошла экологическая дивергенция: исходно одинаковые бактерии разделились на экологические разновидности. Эти разновидности взаимодействуют друг с другом, сосуществуя вполне по-соседски. Внутри каждой разновидности эволюция продолжается своим ходом, причем дальнейшие изменения направляются как предшествующей эволюционной историей, так и меняющимся экологическим окружением. Таким образом, эволюция перехитрила исследователей, надеявшихся изучить действие мутаций и отбора в «предельно простой» искусственной системе.

Эксперимент Ленски показал, что в бесполых популяциях даже в неизменных условиях идет непрерывный рост приспособленности. Происходит это за счет накопления и закрепления полезных мутаций. Хорошо бы разобраться подробнее в этом процессе: что за мутации, как и в какой последовательности они распространяются в популяции. Эту непростую задачу удалось решить с помощью новой методики «генетического штрихкодирования». Применив ее, американские ученые смогли в небывалых подробностях изучить процесс накопления полезных мутаций в большой бесполой популяции дрожжей при адаптации к новой среде. Как выяснилось, на начальных этапах общий рост приспособленности популяции идет за счет высоковероятных мутаций со слабым положительным эффектом, которые возникают независимо у множества особей. На этой стадии процесс адаптации предсказуем: его можно описать простыми формулами. В дальнейшем роль случайности возрастает, потому что на первый план выходят маловероятные мутации с сильным полезным эффектом. Кроме того, исследование наглядно показало, что темп появления полезных мутаций может быть весьма высоким.

До сих пор мы говорили об эволюции бесполых популяций, в которых нет горизонтального обмена генетической информацией между организмами. В природе, однако, такой обмен в той или иной форме распространен очень широко, а самых впечатляющих успехов добились организмы, практикующие на удивление сложный (и порой весьма затратный) его вариант, известный под названием «половое размножение». Прежде чем обсуждать, зачем оно нужно (один из любимых вопросов эволюционистов-теоретиков, который им никогда не надоедает), хорошо бы понять, как вообще мог возникнуть данный тип межорганизменной рекомбинации (перемешивания генетического материала разных особей). Познакомимся с одной из гипотез. Она связывает происхождение полового размножения с полиплоидными прокариотами (археями), обитавшими в мелководных микробных сообществах в начале протерозойского эона. В то время уровень свободного кислорода уже начал расти, но озонового экрана еще не образовалось, так что темп мутагенеза должен был резко повыситься. Моделирование показывает, что в таких условиях полиплоидность у прокариот, не имеющих митоза, дает кратковременное эволюционное преимущество, но в долгосрочной перспективе повышает риск вымирания из-за накопления рецессивных вредных мутаций. Полиплоидные микробы могли справляться с этой проблемой несколькими способами, причем все они подозрительно напоминают те или иные аспекты или этапы полового размножения. Их постепенное совершенствование и комбинирование логически приводит к появлению сначала митоза, а затем мейоза и полового размножения. Гипотеза объясняет, как и почему вместе с половым размножением должны были возникнуть и некоторые другие специфические особенности эукариот: множественные линейные хромосомы, высокий уровень генетической избыточности и быстрое появление новых генных семейств на заре эволюции эукариот. К числу фактов, согласующихся с гипотезой, относится и недавно обнаруженная корреляция между полиплоидностью и наличием гистонов у архей.

Возможно, половое размножение возникло как средство защиты от вырождения в условиях критически высокого темпа мутирования. Но вот критический этап пройден, почему бы не избавиться от этого странного и громоздкого способа смешивания генов родителей в геномах потомков? В 1970-е годы Джон Мейнард Смит показал, что при выполнении ряда простых условий бесполое размножение должно давать двойной выигрыш по сравнению с раздельнополостью. Эта идея стимулировала поиск преимуществ полового размножения, которые должны перевешивать «двойную цену самцов». Однако теории теориями, но как на деле измерить преимущества полового или бесполого размножения? Насколько идея Мейнарда Смита приложима к реальным, а не гипотетическим видам? Американским биологам удалось это проверить: для исследования они выбрали новозеландскую улитку — очень удобный объект, потому что у этого вида нормальные самки и самцы сосуществуют с «бесполыми» самками, размножающимися без помощи самцов.

Половое размножение ускоряет адаптацию к меняющимся условиям — это и с теоретических позиций логично, и экспериментально подтверждается на реальных видах. Следующий естественный вопрос, который возникает у эволюциониста, — как адаптация половых и бесполых организмов выглядит на генетическом уровне? Почему половое размножение справляется с адаптацией лучше бесполого? До сих пор таких сравнений на геномном уровне не проводили, и не потому, что это праздный вопрос — как раз наоборот, крайне важно выяснить, в чем разница между эволюционными траекториями у половых и бесполых организмов. Но это технически трудная задача. Однако американские биологи придумали, как ее решить: они создали генно-модифицированные штаммы дрожжей с половыми и бесполыми линиями, идеально подходящие именно для решения данной задачи.

Половое размножение, появившееся у живых организмов как средство ускоренной адаптации к меняющимся условиям и защиты от генетического вырождения, в дальнейшем получило подкрепление — половой отбор. Основа эволюционной эффективности полового размножения — в перекомбинировании удачных и неудачных генетических вариантов, невозможном при бесполом размножении. При бесполом размножении приходится ждать, пока в одной линии будет последовательно появляться одна полезная мутация за другой, тогда как в половой популяции полезные мутации могут появляться у разных особей, а затем совмещаться в одном организме. При бесполом размножении отбор может отбраковать вредную мутацию только вместе со всеми благоприятными аллелями, находящимися в данном геноме, а половое размножение позволяет отделять зерна от плевел. Половой отбор основан на конкуренции между особями за половых партнеров, а также на подборе наиболее «подходящих» партнеров, что бы под этим ни подразумевалось: приспособленность, привлекательность, генетическая совместимость или, к примеру, заботливость.

Как именно осуществляется подбор брачных партнеров? Кто кого и по каким критериям выбирает? Способы выбора и предпочтения зависят от множества факторов, могут быстро меняться в ходе эволюции и очень сильно различаются у разных видов. Тема эта поистине неисчерпаема именно в силу бесконечного разнообразия признаков, которые могут попасть под действие полового отбора или повлиять на его ход и направленность. У животных с развитым мозгом хорошим показателем «качества» брачного партнера являются его когнитивные способности. С одной стороны, чем лучше работает управляющий центр, тем лучше, как правило, показатели всей периферии — телесного здоровья, адекватности поведения, обучаемости, а следовательно, и выживаемости. С другой — развитые когнитивные способности помогают и партнера выбирать более грамотно: выбор может осуществляться и «по уму», и «с умом». Не следует думать, что речь идет исключительно о высших приматах. Вероятно, когнитивные характеристики вовлечены в половой отбор у многих животных. Недавно это удалось показать на примере гуппи острова Тринидад. В эксперименте сравнивали, каких партнеров предпочитают самки гуппи с большим и маленьким мозгом. Самки с большим мозгом выбирали ярко окрашенных самцов, а самки с маленьким мозгом игнорировали различия между самцами по яркости окраски. В результате такого подбора комбинируются гены умных самок и гены самцов с хорошими показателями здоровья.

Одна из важных тем в эволюционной биологии — взаимодействие разных типов и форм отбора. Например, отбор, осуществляемый хищниками, может отбраковывать медленно бегающих или недостаточно хорошо маскирующихся особей. Половой отбор, направляемый вкусами выбирающей половины и конкуренцией за партнеров, способен порой придавать эволюции странные направления. При этом «обычный» естественный и половой отбор могут оказаться разнонаправленными. Яркий пример разнонаправленности двух типов отбора дало изучение одичавших овец на шотландском острове Хирта. Казалось бы, у всех самцов рога давно должны были стать большими, потому что большерогие самцы получают преимущество в размножении. Но почему-то в популяции сохраняются и малорогие, и большерогие бараны.

В нагрузку к половому размножению и половому отбору раздельнополые организмы получили и так называемый конфликт полов. Он возникает из-за того, что оптимальные стратегии поведения самцов и самок, как правило, различаются. Самцы, производящие много «дешевых», маленьких сперматозоидов, могут максимизировать свой репродуктивный успех путем оплодотворения максимального числа партнерш. Самки, вкладывающие больше ресурсов в каждого потомка, заинтересованы не столько в количестве, сколько в «качестве» партнеров. Это различие «эволюционных интересов» и создает почву для конфликта полов, который проявляется в развитии признаков, выгодных одному полу, но вредных другому. Между самцами и самками может даже начаться эволюционная гонка вооружений, почти как между хищниками и жертвами. Конфликт полов развивается вопреки тому, что любой ген попадает попеременно то в женский, то в мужской организм и поэтому должен, по идее, «заботиться» в равной мере о тех и других.

В качестве экстремального проявления конфликта полов можно рассматривать так называемый мужской инфантицид (или по-другому — конкурентный инфантицид): самцы убивают детенышей, рожденных самками от других отцов. Не следует думать, что лишь какие-то единичные виды выработали такое, на первый взгляд, патологически жестокое свойство. Как и в целом конфликт полов, вытекающий закономерно из самой сути полового отбора, так и мужской инфантицид — явление весьма распространенное. На сегодняшний день он известен более чем у сотни видов млекопитающих от хомяков до бегемотов, включая и человекообразных обезьян — горилл и шимпанзе. Несмотря на немыслимую для человека жестокость, мужской инфантицид закономерен, так как помогает детоубийце быстрее произвести собственное потомство. Сравнение данных по поведению, социальной организации и эволюционной истории 260 видов млекопитающих показало, что мужской инфантицид чаще всего развивается при такой социальной организации, которая позволяет немногим самцам монополизировать доступ ко многим самкам. Инфантицид не ведет к радикальным изменениям социальной организации, но увеличивает шансы формирования у самок склонности к промискуитету, который порой оказывается эффективной мерой противодействия мужским попыткам повысить свою приспособленность за счет самок и детенышей.

Как показывают рассмотренные выше примеры, эволюционные последствия полового отбора могут быть весьма разнообразными. С одной стороны, половой отбор способствует отбраковке вредных мутаций, что может положительно сказаться на долгосрочных перспективах существования вида. С другой стороны, иногда он приводит к развитию адаптаций, выгодных одному из полов, но потенциально вредных для вида (яркий пример такой адаптации — мужской инфантицид). Как выясняется, половой отбор способен даже доводить виды до вымирания. На это указывают факты, опубликованные американскими палеонтологами в 2018 году. Проанализировав распространение 93 видов остракод (ракушковых раков) в верхнемеловых отложениях юго-востока США, ученые обнаружили связь между силой полового отбора и вероятностью вымирания вида.

Удивительно, насколько логичными становятся самые сложные явления, если смотреть на них сквозь призму отбора. Конфликт полов — многоликий и многообразный — становится понятным и объяснимым с позиций полового отбора. Добавим к половому отбору отбор на выживаемость — получим поддержание полиморфизма в популяции. Скомбинируем половой отбор и родственный — и вот уже у родственников острота конкуренции за партнеров снижается, а конфликт полов сглаживается. Еще бы, ведь эволюционная задача у родственников общая — распространить и передать следующим поколениям сходные, родственные наборы генов. Именно так, согласно теории, должно обстоять дело. Кому-то это может показаться удивительным, но даже в неоднозначных ситуациях, когда действуют разнонаправленные векторы отбора — полового и родственного, — практика подтверждает теорию. Так, были проведены эксперименты, в которых удалось смоделировать совместное действие полового и родственного отбора. Мы рассмотрим два из них: один — на плодовых мушках дрозофилах, другой — на корневых клещах. Оба исследования показывают, насколько предсказуемыми могут быть результаты отбора (если, конечно, в распоряжении исследователей есть адекватные теории, позволяющие эти результаты предсказывать). В первом эксперименте, поставленном биологами из Оксфордского университета (Великобритания), за самок конкурировали либо родственные друг другу самцы, либо неродственные. Самцы-чужаки, помещенные в пробирку с самкой, чаще дрались и агрессивнее ухаживали за дамой, чем родные братья в такой же ситуации. Из-за этого самка быстрее теряла с возрастом плодовитость и за свою жизнь успевала оставить меньше потомков. А если за самкой ухаживали братья, то она дольше оставалась плодовитой и производила в итоге больше потомства. Так что братские гены тоже оставались в выигрыше. О втором эксперименте мы расскажем в следующей главе.

Это второй пример, демонстрирующий, как срабатывает сочетание родственного и полового отбора. Теория предсказывает, что высокий уровень внутригруппового родства должен способствовать эволюции кооперации и препятствовать развитию «эгоистических» адаптаций, повышающих конкурентоспособность индивида в ущерб другим особям. Именно это и было показано в эволюционном эксперименте на корневых клещах. Для этих членистоногих характерен ярко выраженный конфликт полов: у самцов есть адаптации, повышающие их репродуктивный успех в ущерб здоровью самок. Однако у клещей, содержавшихся в условиях, благоприятных для родственного отбора, всего за девять поколений острота конфликта полов снизилась. Самцы стали причинять самкам меньше вреда при спаривании, что повысило репродуктивный успех последних. Исследование подтвердило, что родственный отбор является мощным эволюционным механизмом, противодействующим эволюции эгоистических признаков.

Отбор работает с наследственной изменчивостью, с генетическим разнообразием, которое возникает и поддерживается благодаря мутациям (в самом широком смысле этого слова), а также перекомбинированию генетических вариантов (рекомбинации). То, что основой для дарвиновской эволюции служит генетическая изменчивость, — утверждение вполне тривиальное. Но, как и многие другие тривиальные утверждения общего характера, оно остро нуждается в наглядных примерах и детализации. Мы рассмотрим несколько исследований, в которых разбирается, какие мутации оказываются «интересны» отбору, какие из них ведут к формообразованию, к становлению новых фенотипов, в том числе — более сложных, чем предковые. Расшифровка генетических основ эволюции сложных признаков — задача технически крайне трудная, сегодня это передний край науки. В первом примере генетики из Великобритании, Германии и США работали с модельным растением резуховидкой Таля (Arabidopsis thaliana).

Дупликация генов — один из главных способов появления новых признаков. Ранее на отдельных примерах было показано, что эволюционная судьба паралогов (копий удвоившегося гена) может складываться по-разному. Паралог может приобрести новую функцию, сохранить старую или специализироваться на одном из аспектов старой функции, разделив сферы действия с другими паралогами. Все это по-разному сказывается на таких важных характеристиках организма (и отдельных его подсистем), как сложность и помехоустойчивость. Канадские генетики попробовали количественно оценить эволюционные последствия 56 генных дупликаций, произошедших у предков пекарских дрожжей. Для этого они изучили влияние каждой дупликации на систему взаимодействий между белками в клетке. Оказалось, что в 22 случаях дупликация повысила помехоустойчивость системы. Это проявляется в том, что при потере или поломке одного из паралогов его функции частично или полностью берет на себя другой, сохранившийся. Однако в 19 других случаях утрата одного паралога не только не компенсировалась, но и нарушила работу второго, сохранившегося паралога. Таким образом, исследование показало, что копии удвоившегося гена часто становятся взаимозависимыми, после чего одна из них уже не может нормально работать без второй. В результате система не только усложняется, но и становится менее надежной (более чувствительной к помехам).

Данное исследование, на наш взгляд, имеет большое мировоззренческое значение. Оно наглядно показывает, как в ходе эволюции сложное может развиться из простого совершенно случайно и без всякой пользы. Организм усложняется, не получая от этого никакой выгоды: эффективность выполнения всех функций остается на прежнем уровне. Этот пример, добавляя конкретики описанным выше оценкам последствий генных дупликаций, еще раз подчеркивает «недальновидность» естественного отбора, его работу только «здесь и сейчас». С помощью генно-инженерных экспериментов американские биологи расшифровали последовательность событий, в результате которых у предков пекарских дрожжей (Saccharomyces cerevisiae) усложнилась одна из регуляторных систем. Предковый ген удвоился, и в каждой из двух копий стали накапливаться свои мутации. В итоге каждая копия утратила ту или иную часть исходных функций. Функции, утраченные каждой из копий, были разными, благодаря чему копии перестали быть избыточными — теперь оба гена, по-разному подпорченные мутациями, стали жизненно необходимы организму. Дальнейшая специализация двух генов подстегивалась тем, что поначалу они конкурировали, мешая друг другу работать. Минимизация конкуренции потребовала закрепления дополнительных мутаций. В конце концов система усложнилась (два специализированных гена вместо одного многофункционального), хотя сами дрожжи ничего от этого не выиграли. Усложнение стало побочным эффектом цепочки отчасти случайных, отчасти закономерных событий, начало которым положило случайное удвоение гена.

Материалом эволюционных изменений всегда служит генетический полиморфизм (разнообразие аллелей в генофонде популяции). Высокий уровень полиморфизма раздвигает рамки возможностей для отбора, что, по идее, должно повышать эволюционную пластичность вида, его способность адаптироваться к меняющимся условиям. Разные виды живых организмов очень сильно различаются по уровню внутривидового генетического полиморфизма. Причины этих различий не вполне ясны. Разобраться в этом помогло обобщение новых данных по генетическому разнообразию 76 видов животных, относящихся к 31 семейству и 8 типам. Ключевым фактором, коррелирующим с уровнем полиморфизма, оказался родительский вклад в потомство, который можно оценить по размеру особей на той стадии, когда они покидают родителей и переходят к самостоятельной жизни. Как выяснилось, низкий полиморфизм характерен для видов, выпускающих в мир немногочисленное, но зато крупное и способное за себя постоять потомство, а высокий — для тех, кто бросает многочисленных мелких, незащищенных потомков на произвол судьбы. Таким образом, забота о потомстве выступает одним из факторов, модулирующих эволюционный процесс.

Это исследование впервые продемонстрировало необычный способ поддержания полиморфизма — за счет симбиотических отношений. Для многих видов животных характерно наличие двух или более дискретных вариантов окраски (или других наследственных признаков). Считается, что устойчивое сохранение такого полиморфизма может обеспечиваться либо частотно-зависимым отбором (когда селективное преимущество получают особи с редким вариантом признака), либо разнородностью и переменчивостью условий среды, либо селективным преимуществом гетерозигот. Ни одно из этих объяснений не приложимо к тлям Macrosiphoniella yomogicola, у которых тем не менее наблюдается ярко выраженный полиморфизм по окраске. Японские энтомологи обнаружили, что в данном случае полиморфизм поддерживается муравьями, которые охраняют колонии тлей от хищников, получая в награду сладкие выделения. По не выясненным пока причинам наиболее привлекательны для муравьев те колонии тлей, в которых примерно поровну зеленых и красных особей. О таких колониях муравьи заботятся лучше всего, что, возможно, обеспечивает лучшее выживание тлей в разноцветных колониях. Это пока единственный известный случай, когда полиморфизм поддерживается за счет симбиотических отношений.

Одна из важных проблем эволюционной биологии — взаимосвязь генетической эволюции и ненаследственной фенотипической изменчивости. В основе эволюционных изменений лежит дифференциальное размножение генетических вариантов (аллелей). Результаты эволюции «запоминаются» на уровне генотипа. Однако отбор всегда идет по фенотипу, а фенотип определяется генотипом не точно, а лишь приблизительно. Ход развития организма зависит не только от генов, но также от условий среды, и к тому же в развитии всегда есть элемент случайности («онтогенетический шум»). Фенотипический диапазон, возможный при данном генотипе, называют нормой реакции, а изменчивость фенотипа при неизменном геноме, обусловленную колебаниями среды, — фенотипической пластичностью, или модификационной изменчивостью. Некоторые организмы в ходе эволюции выработали способность отвечать на те или иные средовые воздействия адаптивными (выгодными, полезными) изменениями фенотипа, например, отращивая более густую шерсть в холодную погоду. В таких случаях говорят об адаптивных модификациях. Но это — лишь частный случай фенотипической пластичности, которая далеко не всегда бывает полезной.

Кишечная микрофлора — один из важнейших «факторов среды» для многих животных. Реакции организма на присутствие тех или иных компонентов кишечной микрофлоры могут быть на удивление сложными и многообразными. Эти реакции можно рассматривать как проявление фенотипической пластичности. В таком случае деление наших микроскопических спутников на «хороших» и «плохих», полезных и вредных, будет зависеть от того, адаптивными или неадаптивными являются пластические изменения, возникающие в ответ на контакт с микробами. При этом, конечно, нужно помнить, что польза и вред всегда относительны: одно и то же изменение фенотипа может оказаться полезным или вредным в зависимости от обстоятельств. В последние годы стали появляться убедительные данные, показывающие, что кишечные бактерии способны влиять даже на такие сложные, «высокоуровневые» признаки, как особенности социального поведения. Здесь мы рассмотрим исследование, показавшее, что бактерия Lactobacillus reuteri может влиять на социализацию млекопитающих. Известно, что у матерей, страдающих ожирением, дети имеют повышенный риск расстройств аутистического спектра, у них чаще нарушается социальное поведение. Аналогичная закономерность прослеживается и у мышей. В основе этих отклонений, как показали эксперименты, могут лежать изменения кишечной микробиоты. Если самки питались жирной пищей, то у их мышат кишечная микрофлора оказывалась нарушенной. Кроме того, снижалось производство окситоцина в гипоталамусе, слабела реакция системы внутреннего подкрепления на социальные стимулы и, как следствие, пропадал интерес к общению. Но все эти печальные симптомы исчезли, когда мышатам в пищу добавили один-единственный вид кишечных бактерий — L. reuteri. По-видимому, эта бактерия стимулирует адаптивную фенотипическую пластичность по признакам социального поведения, направляя развитие мозга в «выгодную» для животного сторону. Предполагается, что кишечные бактерии влияют на развивающийся мозг при посредничестве блуждающего нерва.

Одной из причин старения многие специалисты считают накопление с возрастом молекулярных «повреждений» той или иной природы. Для проверки этой гипотезы американские и корейские биохимики провели эксперименты на трех модельных объектах — дрожжах, дрозофилах и мышах. Подопытные организмы кормили экстрактами из молодых или старых сородичей. Оказалось, что во всех трех случаях диета, основанная на экстракте из старых сородичей, ускоряет старение. Результаты согласуются с предположением о том, что с возрастом в организме накапливаются вредные вещества, снижающие жизнеспособность, и в этом состоит одна из причин старения.

Голые землекопы и люди отличаются от своих родственников (грызунов и приматов соответственно) двумя редкими особенностями: высоко развитой социальностью и долголетием. Российские и германские биологи проанализировали факты, свидетельствующие о том, что у этих двух видов млекопитающих есть еще одна важная общая черта — ювенилизация (неотения), то есть задержка развития, ведущая к сохранению у взрослых особей ряда детских и даже эмбриональных признаков. Не исключено, что все три необычные особенности голых землекопов и «голых обезьян» — социальность, долголетие и неотения — эволюционно связаны между собой.

Промышленный меланизм березовой пяденицы давно вошел в учебники как яркий пример эволюции в действии. Напомним его суть: в индустриальных районах в связи с потемнением стволов деревьев распространилась черная (меланистическая) форма березовой пяденицы, которая стала быстро вытеснять преобладавшую ранее светлую форму, менее заметную на светлых стволах. Хотя все, кто хоть немного интересуется эволюционной биологией, слышали про эту историю, до недавних пор не было известно, что за мутация породила меланистическую форму. Лишь в 2016 году британские генетики выяснили, что появление темных бабочек было связано со встраиванием транспозона в ген cortex, регулирующий деление клеток. Одновременно другая группа исследователей обнаружила, что варианты (аллели) этого гена связаны с различными элементами орнамента у самых разных бабочек. Судя по всему, ген cortex был привлечен к раскрашиванию крыльев еще на заре эволюции бабочек. Каким образом регулятор клеточных делений управляет окраской крыльев, пока неясно.

Расширим масштаб рассмотрения эволюции с одного вида на многовидовые комплексы. Принцип остается тем же: появление и отбор генетических вариантов в зависимости от природного контекста — что именно выгодно иметь здесь и сейчас. От березовой пяденицы — классического примера внутривидовой адаптации на основе мутаций и отбора — мы перейдем к не менее знаменитому примеру появления целого букета разнообразных видов. Речь пойдет о цихлидах больших африканских озер Танганьика, Малави и Виктория. В каждом из них на основе небольшого числа видов-первопоселенцев в ходе быстрой эволюции появились сотни новых видов. Как происходит такое быстрое, по геологическим масштабам взрывное, видообразование? Сравнение полных геномов пяти видов цихлид позволило частично понять его механизмы. Стремительное видообразование оказалось сложным и многогранным процессом, в котором важную роль сыграли дупликация генов, появление новых регуляторных микроРНК, разнонаправленный отбор по многим генам одновременно, сортировка старых и закрепление новых генетических вариаций в кодирующих и регуляторных областях, а также быстрое накопление генетического разнообразия в начальный период заселения озера, когда из-за низкой конкуренции действие стабилизирующего отбора временно ослабло.

Дарвиновы вьюрки вместе с березовыми пяденицами и африканскими цихлидами считаются классикой эволюционных исследований. Однако, как и в предыдущих двух случаях, это вовсе не означает доскональное понимание и изученность, а подразумевает скорее неизбывный интерес к данному объекту. Перед вами — во всех отношениях показательные исследования эволюции в действии. Чтобы «увидеть» ее, потребовались терпение, наблюдательность и изрядные планомерные усилия. Речь идет об эволюции дарвиновых вьюрков на острове Дафне Галапагосского архипелага. Здесь удалось наблюдать, как происходит дивергентная эволюция. Согласно теории, конкуренция за ресурсы между близкими видами способствует дивергенции, или расхождению признаков. В результате в тех районах, где представители двух видов живут вместе, они начинают сильнее отличаться друг от друга, чем в непересекающихся частях их ареалов. Процесс расхождения признаков у вьюрков удалось пронаблюдать во всех подробностях. На фоне засухи 2004–2005 годов увеличилась конкуренция за пищу между популяциями среднего земляного вьюрка и недавно обосновавшегося на острове большого земляного вьюрка. В результате у первых под действием отбора быстро уменьшился (в среднем) размер клюва, так что два вида стали сильнее различаться по этому признаку. Как выяснилось, ключевую роль в этом сыграл ген HMGA2. У него есть два аллельных варианта, L (large) и S (small), которые влияют на размер клюва не только у земляных, но и у прочих галапагосских вьюрков. Во время засухи у среднего земляного вьюрка происходил интенсивный отбор по HMGA2: погибло 70 % птиц с генотипом LL и 47 % особей с генотипом LS, тогда как из птиц с генотипом SS не пережили засуху только 24 %. Исследование показало, что быстрое расхождение признаков у конкурирующих видов может происходить за счет сильного отбора по единственному локусу.

Следующее исследование, проведенное Питером и Розмари Грант на острове Дафне Галапагосского архипелага, детально документирует процесс появления нового вида вьюрков. Его родоначальниками стали две самки из местной популяции среднего земляного вьюрка и залетный самец большого кактусового земляного вьюрка с острова Эспаньола, расположенного в 100 км к юго-востоку. Гибридные потомки этих родителей скрещиваются только друг с другом. У них сформировались специфические пропорции клюва, что говорит об успешном разделении ниш с местными видами вьюрков, а также своеобразная видовая песня, что объясняет быстрое формирование репродуктивной изоляции. Новый вид процветает, несмотря на инбридинг: в 2010 году, через 30 лет после исходной гибридизации, на островке жило уже 36 особей.

Итак, при удачном стечении обстоятельств гибридизация может порождать новые виды. Однако она способна приводить и к уменьшению разнообразия, когда один из видов полностью сливается с другим. И тут тоже важен контекст — те природные изменения, к которым вынуждены адаптироваться местные популяции. Подобную ситуацию удалось детально разобрать на примере дарвиновых вьюрков с острова Флореана Галапагосского архипелага. В конце XIX — начале XX века на этом острове обитало три вида древесных вьюрков: малый, большой и попугайный (самый крупный). Как выяснилось, к настоящему времени попугайный древесный вьюрок полностью вымер на острове, а большой интенсивно гибридизуется с малым, что в итоге может привести к полному слиянию двух видов. Вызвала этот процесс занесенная на остров в 1960-е годы паразитическая муха Philornis downsi, личинки которой поселяются в гнездах вьюрков и убивают птенцов. Крупные птицы страдают от паразита сильнее, чем мелкие, а межвидовые гибриды отличаются повышенной устойчивостью. В настоящее время крупные самки стараются выбирать себе мелких мужей (что и приводит к межвидовой гибридизации), а крупные самцы часто остаются бездетными. Гибридизация слабеет в засушливые годы и усиливается в дождливые, что совпадает с колебаниями численности паразитической мухи.

Маленькие уединенные острова — удобные полигоны для изучения эволюции, но на больших территориях эволюционные процессы могут протекать по-другому. В том числе — из-за пространственной неоднородности среды и из-за больших расстояний, затрудняющих генетический обмен между удаленными популяциями, но все же не пресекающих его полностью. Один из интересных результатов эволюции на больших пространствах — так называемые кольцевые виды. Это комплексы близкородственных форм, постепенно расселявшихся вокруг какой-либо географической преграды. Причем бывает так, что крайние, наиболее сильно разошедшиеся формы, встретившись по другую сторону преграды, уже не могут скрещиваться, хотя между ними имеется непрерывный ряд взаимно совместимых разновидностей. Зеленая пеночка считается хорошим примером кольцевого вида. Ее ареал описывает кольцо вокруг Тибетского нагорья, с близкими по фенотипу и генотипу соседними подвидами и единственным резким переходом в северной части кольца, где встречаются два наиболее сильно разошедшихся подвида. Однако история формирования этого кольцевого ареала, выведенная на основе генетического анализа 95 птиц из 22 районов, оказалась более сложной, чем предполагала классическая схема. Поток генов вдоль кольца прерывался как минимум однажды в его юго-западной части, а «крайние» подвиды все-таки иногда скрещиваются, несмотря на мощные поведенческие изолирующие механизмы и пониженную приспособленность гибридов. Редкость «идеальных» кольцевых видов в природе, скорее всего, связана с тем, что колебания климата, приводящие к резким изменениям границ ареалов животных, происходят относительно часто, а на формирование полной репродуктивной несовместимости между разделившимися популяциями требуется очень много времени. Например, ледники в Северном полушарии наступают и отступают с периодичностью около 100 тысяч лет, а на развитие полной нескрещиваемости у птиц требуется, как правило, несколько миллионов лет.

Яндекс.Метрика Top.Mail.Ru