Разработана концепция комплексного экологического мониторинга природной среды (Израэль), составной частью которого должен быть биологический мониторинг, осуществляемый на станциях фонового мониторинга. Большое внимание, уделяемое ныне биологическому мониторингу, определяется рядом обстоятельств.

Во-первых, измерение физических и химических параметров загрязненности природной среды более трудоемко по сравнению с методами биологического мониторинга.

Во-вторых, в окружающей человека среде нередко присутствует не один, а несколько токсичных компонентов. При этом довольно часто возникает синергизм в их действии на живые организмы, при котором суммарный эффект превышает действие, оказываемое каждым компонентом в отдельности. Иными словами, концентрация каждого отдельного компонента комплекса загрязнителей, фиксируемая с помощью физико-химических методов, может казаться неопасной для живых организмов, тогда как их совокупное влияние является угрожающим. Этот синергизм не учитывается физико-химическими методами изучения загрязненности природной среды, однако он выявляется при использовании биоиндикации, т. е. при наблюдении непосредственного воздействия загрязнителей природной среды на живые организмы.

Лишайники нетребовательны к факторам внешней среды, они являются пионерами, поселяющимися на голых скалах. Однако для своего существования эти растения нуждаются в очень чистом воздухе. Малейшее загрязнение атмосферы, не влияющее на большинство высших растений, вызывает массовую гибель лишайников.

Еще в 1866 г. финский лихенолог В. Нюландер, описавший лишайники Парижа, отметил видовую бедность лихенофлоры большого города по сравнению с флорой его окрестностей. При повышении степени загрязненности воздуха первыми исчезают из городов кустистые лишайники, затем листоватые и, наконец, накипные (корковые) лишайники. Во многих промышленно развитых городах, особенно вокруг заводов, возникают зоны, в которых лишайники вообще отсутствуют. Это так называемая «лишайниковая пустыня». Для того чтобы читатели имели представление о размерах «лишайниковой пустыни», приведем следующие цифры: в 1957 г. ее площадь в Мюнхене составила 58 км2, а в Таллине в 1954 г. — около 12 км2.

При индикации загрязненности атмосферы фтором используют две группы растений: устойчивые и неустойчивые к нему. Устойчивые к данному фитотоксиканту растения накапливают его. Количество фтора в этих растениях и служит показателем загрязненности воздуха фтором. Очень чувствительные к фтору растения реагируют на присутствие даже слабых концентраций этого фитотоксиканта развитием некрозов листьев.

Гладиолусы и фрезия особо чувствительны к фторидам. Эти растения предлагается широко использовать для оценки загрязненности воздуха указанными веществами. Гладиолусы очень удобны для этих целей, так как обладают повышенной устойчивостью к другому широко распространенному фитотоксиканту — сернистому газу. Весьма ценным для индикации присутствия фтора в атмосфере является голландский сорт гладиолусов «Снежная королева». По мере увеличения концентрации фтора в воздухе верхняя часть листьев растений отмирает. В качестве индикаторного растения на фториды гладиолус, успешно используется в США и Канаде.

Загрязнение окружающей среды медью резко сказывается на темпах роста растений, которые приобретают при этом карликовую форму. У некоторых из них (мак, роза) окраска лепестков меняется на голубую или даже черную. У шток-розы в этом случае цветки с ненормально узкими лепестками. Цветки эшшольции при избытке меди становятся сизыми. Прорастание семян табака под влиянием меди резко тормозится.

Некоторые бромелиевые и орхидные, культивируемые в теплицах, оказались очень чувствительными к цинку. Выяснилось, что они накапливали этот элемент из дождевой воды, которой их поливали. Цинк попадал в воду из оцинкованных несущих конструкций оранжерей. Вполне естественно, можно попытаться использовать эти растения в качестве индикаторов загрязненности окружающей среды цинком. В природной обстановке у растений под влиянием избытка цинка отмирают кончики листьев, возникают уродливые формы. У мака цветки иногда становятся махровыми.

Отрицательное воздействие выхлопных газов автомобилей проявляется на некоторых растениях настолько отчетливо, что их с успехом можно использовать для обнаружения опасной для здоровья людей концентрации этих газов. Особенно это важно в таких местах, где вследствие слабой циркуляции воздуха может происходить скопление выхлопных газов, например, в туннелях для автотранспорта. С целью индикации опасных концентраций ядовитых веществ там помещают сосуды с разными растениями. При большой концентрации газов концы листьев у ряда растений засыхают, а на самих листьях появляются светлые участки, лишенные хлорофилла. Эти показатели свидетельствуют о необходимости вентиляции в туннеле.

Чрезвычайно чувствительно к выхлопным газам автомобилей комнатное растение традесканция. Французские ученые подметили, что окраска ее тычинок меняется из синей в розовую при увеличении в воздухе окиси углерода и окислов азота, выбрасываемых двигателями внутреннего сгорания.

Одним из компонентов фотохимического смога является озон. Установлено, что разные сорта одного и того же растения неодинаково реагируют на загрязнение окружающей среды, подобно тому как существует сортовая реакция растений по отношению к вредителям, болезням, воздействию неблагоприятных условий. Некоторые сорта растений оказались чувствительными к определенным веществам, загрязняющим воздух. Фасоль сорта Пинто реагирует на избыток озона и пероксиацетилнитрата. Выведены сорта табака, отличающиеся по отношению к озону. Так, растения сорта BelB устойчивы, сорта BelC чувствительны, а сорта BelW3 сильно чувствительны к нему.

В 1967 и 1968 гг. в отдельных районах ФРГ определяли загрязненность воздуха озоном на основе симптомов повреждения растений-индикаторов. В качестве растения-индикатора был использован табак сорта BelW3. Установлено, что степень повреждения растений в условиях ФРГ была ниже, чем в США. Авторы исследований объясняют это тем, что в ФРГ концентрация озона в воздухе при проведении опыта была сравнительно невысокой. В связи с этим для учета влияния пониженных концентраций озона требуются сорта табака более чувствительные, чем растения сорта BelW3.

Индикаторы радиоактивности

Некоторые водоросли обладают способностью избирательно накапливать отдельные элементы, в том числе радиоактивные (цирконий, рутений, иттрий, торий и др.). Так, например, концентрация стронция-90 в тканях протококковой водоросли сценедесмус превышает концентрацию этого элемента в воде в 1000–9000 раз. Высокую концентрацию радиоактивных веществ несут планктонные диатомовые водоросли, удельная радиоактивность которых в зараженной среде в 2 тыс. раз больше, чем в воде.

В связи с этим с помощью растений становится возможным контроль за радиоактивностью водоемов в случае попадания в них радиоактивных отходов. Так, например, исследование радиоактивности водорослей в р. Колумбия позволило определить площади заражения воды ниже Хэнфордских реакторов, которое было значительным уже на расстоянии 25–50 км.

Определить с помощью растений степень загрязненности воздуха и воды вредными веществами — значит решить только часть проблемы охраны окружающей среды. Каким образом можно избавиться от вредных примесей? Здесь на помощь человеку вновь приходят растения.

Борьба с загрязнением атмосферы и гидросферы должна вестись прежде всего с помощью технологических приемов. Однако применение даже очень совершенных фильтров не может полностью предотвратить поступление в окружающую среду вредных веществ. Кроме того, технологические усовершенствования часто нейтрализуются ростом числа объектов, загрязняющих окружающую среду.

В атмосфере и гидросфере Земли содержится 1,5∙1015 т кислорода. Содержащийся в воздухе и воде кислород является результатом деятельности автотрофных организмов, осуществлявшейся на протяжении длительного периода истории Земли. Появление на Земле кислорода явилось мощным стимулом эволюции живых организмов, поскольку они получили возможность осуществлять свои многообразные физиологические функции благодаря использованию энергии, выделяющейся в большом количестве при аэробной диссимиляции органических веществ.

Кислород, образуемый в ходе фотосинтеза современной растительностью, используется на дыхание самих растений (около 1/3), на аэробное разложение органических веществ микроорганизмами, на дыхание животных и человека, а также на процессы горения различных веществ. Осуществление всех этих процессов приводит к тому, что почти весь кислород, выделяемый наземной растительностью, расходуется и накопления его в атмосфере почти не происходит. К тому же суммарная годовая продукция кислорода лесов составляет, по подсчетам специалистов, ничтожно малую величину по отношению к общему запасу его в атмосфере Земли, а именно около 1/22000.

Одно из важнейших значений зеленых растений заключается в том, что они осуществляют процесс утилизации углекислого газа. О масштабах этого процесса свидетельствует тот факт, что за год растения связывают в форме органических веществ около 6–7 % углекислого газа, содержащегося в атмосфере Земли. Приблизительно около трети количества образованного в ходе фотосинтеза органического вещества, расходуется самими растениями при дыхании, что приводит к высвобождению углекислого газа. Очень незначительная доля органических веществ (около 1/1000) консервируется (например, в виде торфа), а остальное количество их становится достоянием гетеротрофных организмов: микробов, животных, человека. В результате осуществления ими процессов дыхания, брожения и гниения органические вещества распадаются с выделением углекислого газа. Кроме того, углекислый газ высвобождается при горении древесины, газа, нефти, каменного угля и других горючих материалов, при извержении вулканов.

Различные виды растений обладают неодинаковой способностью к поглощению сернистого газа. За вегетационный период (с мая по сентябрь) газопоглотительная способность растений выражается, по данным Ю. З. Кулагина, следующими цифрами (в пересчете на сухое вещество 10 кг листвы дерева и 3 кг листвы кустарника) (г):

 

Сероводород

Сероводород, загрязняющий иногда атмосферу, может поглощаться листопадными и вечнозелеными растениями, причем разные виды накапливают этот фитотоксикант с различной скоростью.

В высоких концентрациях сероводород вреден для растений, однако низкие его концентрации могут повышать темпы их роста. Так, например, доза этого соединения 300 мг/кг воздуха вызывала депрессию роста салата и сахарной свеклы, а в концентрации 30 мг/кг урожай салата, вес свежих и высушенных листьев и корней сахарной свеклы в условиях теплицы увеличивался. Добавление к сероводороду углекислого газа устраняло депрессию роста этих растений, вызванную высокой концентрацией сероводорода, а в случае хлопчатника и люцерны ускоряло рост растений по сравнению с контролем.

Превращение предельных углеводородов. Газообразные предельные углеводороды усваиваются растениями через листья и через корни (например, проростки риса усваивают через корни метан). По данным С. В. Дурмишидзе, меченый углерод метана включается в состав различных органических соединений клетки, а часть его выделяется в виде 14CO2. В проростках кукурузы, побегах чая и тополя идентифицированы органические кислоты — муравьиная, яблочная, лимонная, янтарная, фумаровая, а также аминокислоты — лейцин, глутаминовая кислота, α-аланин и глицин. Исследователи предполагают, что окисление метана в растениях осуществляется по схеме: метан→метанол→формальдегид→муравьиная кислота→…→CO2. Образующаяся при окислении метана муравьиная кислота может подвергаться в растениях дальнейшим превращениям до углекислого газа. Научно-технический прогресс в последние годы способствовал резкому повышению производительности труда шахтеров. Современное оборудование позволяет добывать из одного забоя до 2–5 тыс. т угля в сутки. Ученые работают над тем, чтобы обеспечить добычу 8—10 тыс. т.

Лес способствует очистке атмосферы от радиоактивного загрязнения. Ученые установили, что листья и хвоя деревьев захватывают до 50 % радиоактивной пыли, защищая посевы от радиоактивного загрязнения. Перехватывать содержащиеся в воздухе радиоактивные аэрозоли, снижая плотность загрязнения полей и пастбищ, могут полезащитные полосы. После сильного кратковременного облучения полосы леса радиоактивность наветренной стороны была в 32 раза больше по сравнению с подветренной. Радиоактивные элементы не только механически задерживаются растениями, но и усваиваются ими. Это обстоятельство должно учитываться при выборе мест для строительства атомных электростанций. Их следует размещать в окружении больших лесных массивов, с тем чтобы обеспечить максимально возможную защиту населения о радиоактивного излучения.

Растения очищают не только воздух, но и воду. При сравнительно небольшом загрязнении водоемы обладают способностью к самоочищению. Под самоочищением понимают совокупность всех процессов, направленных на восстановление первоначального химического состава и свойств воды. Так, например, сразу же у выходного отверстия городских коллекторов обычно довольно высокие концентрации нечистот, однако через несколько километров ниже их сброса вода бывает довольно чистой. Самоочищение представляет собой сложное явление, в котором можно выделить ряд процессов: физических, химических и биологических.

Среди физических факторов, способствующих самоочищению водоемов, первостепенное значение имеет разбавление, растворение и перемешивание поступающих в водоемы загрязнителей. Химические факторы самоочищения — окисление органических и неорганических веществ. Одним из важнейших компонентов самоочищения является использование веществ, загрязняющих воду, живыми организмами (бактериями, водорослями, плесневыми и дрожжевыми грибами и т. п.). Этот процесс составляет основу так называемого биологического самоочищения. Биологическое самоочищение включает ряд последовательных этапов:

Загрязнение водоемов органическими веществами представляет собой крайне неприятное явление, поскольку ведет к истощению запасов водного кислорода, расходующегося на окисление органики. Благодаря фотосинтезу населяющих водоемы растений в водную среду поступает свободный кислород, ускоряющий процессы окисления органических веществ. Но дело не только в этом. Обитатели водоемов обладают способностью непосредственно поглощать органические вещества и разрушать их. В качестве примера рассмотрим превращение ими фенола, одного из наиболее часто встречающихся и опасных загрязнителей водоемов.

Уже давно известно, что некоторые микроорганизмы, например бактерии из рода Pseudomonas, осуществляют окисление фенолов. Это обстоятельство широко используется для очистки от фенольных загрязнений промышленных и бытовых стоков самого разнообразного происхождения.

Одним из загрязнителей водоемов, как мы уже отмечали, являются удобрения. Крупные макрофиты (тростник, рогоз, камыш, аир, ежеголовник и др.) способны извлекать из воды в больших количествах биогенные элементы — азот, фосфор, калий, кальций, серу, железо и тем самым предупреждать и снижать степень евтрофикации водоемов.

Например, густые заросли тростника, по данным П. Г. Кроткевича, могут аккумулировать в урожае биомассы на 1 га до 6 т различных минеральных веществ, в том числе калия — 859, азота — 167, фосфора — 122, натрия — 451, серы — 277 и кремния — 3672 кг. К концу вегетации азот, фосфор, калий и другие элементы частично мигрируют из надземных в подземные органы растений, где они аккумулируются. Накопление биогенных элементов в подземных корневищах имеет важное значение в очищении воды от этих загрязнителей.

Как уже отмечалось, большую опасность для живых организмов представляет накопление в окружающей среде тяжелых металлов. Оказалось, что некоторые микроорганизмы могут обезвреживать эти вещества. Так, например, со сточными водами предприятий химической, металлургической, электрохимической, кожевенной, текстильной и других отраслей промышленности в водоемы могут поступать соли хромовых кислот — хроматы и бихроматы. Они губительно воздействуют на все живые организмы, в том числе и на бактерий. Существующие способы обеззараживания сточных вод от хрома: химический, электрокоагуляционный, ионообменный основаны на переводе хрома из шестивалентного в трехвалентное состояние, в результате чего получается нерастворимая, выпадающая в осадок гидроокись хрома. Эти способы требуют дорогостоящего оборудования, больших капитальных затрат и сложны в эксплуатации.

Некоторые растения слабо повреждаются в результате действия вредных примесей атмосферы. Такие растения представляют большой интерес по крайней мере в двух отношениях. Во-первых, эти растения могут быть широко использованы для озеленения территорий, более или менее постоянно подвергающихся воздействию ядовитых веществ. Во-вторых, эти растения весьма ценны для выяснения механизмов резистентности. Знание же механизмов резистентности открывает пути для селекции форм и сортов полезных растений, не повреждаемых вредными веществами.

Под устойчивостью растений к вредным примесям среды обитания следует понимать их способность противостоять действию ядовитых веществ, сохраняя декоративные качества и нормальную продуктивность. К таким растениям относится ряд видов, отмеченных ниже. Следует, однако, иметь в виду, что сведения относительно устойчивости того или иного растения часто противоречивы. В одних условиях растение может быть устойчивым, в других — более или менее повреждаемым. Сильное влияние на устойчивость растений к загрязнителям атмосферы и гидросферы оказывают климатические параметры.

Почва, в которой выращиваются растения, имеет исключительно важное значение в устойчивости растительных организмов к фитотоксикантам. На плодородных почвах растения меньше страдают от загрязненности воздуха и оказываются более долговечными. При внесении удобрений в почву нейтрализуются накапливающиеся в ней вредные вещества, улучшаются условия существования микроорганизмов, способствующих детоксикации и нейтрализации вредных примесей.

Использование удобрений повышает декоративность и стойкость деревьев к солям, применяемым для борьбы с гололедом. Казалось бы, при этом должно происходить повышение концентрации почвенного раствора и вследствие этого угнетение роста растений. На самом же деле минеральные удобрения способствуют ликвидации неуравновешенности почвенного раствора, от которой в сильной степени страдают придорожные растения. Следует иметь в виду, что внесение больших доз азотных удобрений может привести к повышению чувствительности растений к фитотоксикантам. В связи с этим рекомендуется вносить их дробно.

К физиологически активным веществам относятся фитогормоны (ауксины, цитокинины, гиббереллины), ингибиторы роста, витамины, ферменты и др. Мы уже говорили, что один из видов устойчивости — биологическая — связан со способностью растений регенерировать поврежденные ткани и органы. В связи с этим для повышения устойчивости следует шире использовать физиологически активные вещества, способные ускорять протекание регенерационных процессов. Особенно это необходимо при пересадке крупных деревьев в городе, когда происходит повреждение корневых систем растений. Обработка комля ауксинами может способствовать быстрому отрастанию корней. Использование ауксинов в некоторых случаях позволяет снять действие фитотоксикантов, тормозящих рост растений.

Еще один путь повышения устойчивости растений против фитотоксикантов — нанесение на листья растений веществ, частично нейтрализующих и удаляющих поступающие в растения фитотоксиканты. Рассмотрим несколько характерных примеров.

Для того чтобы предохранить растения от свинца, предлагается опрыскивать их защитными препаратами. В качестве таких препаратов исследователи использовали хелаты: этилендиаминоуксусный кальций и полифосфат натрия. После обработки растворами этих веществ попадающий на поверхность растений свинец образовывал с ними комплексные соединения и при помощи осадков смывался в почву. Попадая с осадками в почву, комплексные соединения превращаются в нетоксичные для растений соли: сульфат свинца и фосфат свинца.

Исследователи пробовали вводить комплексные вещества непосредственно в почву. Там они связывали в комплексные соединения 94–99 % подвижного свинца.

Растение чернокорень лекарственный (Cynoglossum officinale) встречается на пустырях, около жилья, вдоль дорог, на лугах. Это растение до 100 см высотой имеет листья, сходные с собачьим языком, благодаря чему получило название «песий язык». Достаточно положить несколько пучков листьев в местах обитания грызунов, чтобы они исчезли. Грызуны не переносят запаха этого растения. Чернокорень может весьма эффективно использоваться на складах, в подвалах. Будучи посажен в саду, он надежно защищает от грызунов плодовые деревья. Отвар из корней и стеблей чернокорня содержит сильнейший яд, являющийся верным средством борьбы против грызунов. Корабельные грызуны предпочитают броситься в воду, чем перебежать через положенное на их пути растение чернокорня. Крысы немедленно покидают те места, где положен корень этого растения. Чернокорень рекомендуют засовывать в норы, устилать подстожья, края парников.

Выделения некоторых растений губительно влияют на другие растения. Их действие можно сравнить с действием хорошо известных и широко применяемых в практике гербицидов, т. е. веществ, уничтожающих сорную растительность.

Хорошо известно, что если оставить семена свеклы в куче под открытым небом, то на этом месте очень длительное время (в течение нескольких лет) ничего не растет. Семена куколя и некоторых других растений из семейства гвоздичных не прорастают на полях, занятых свеклой, поскольку она выделяет вещества, задерживающие их прорастание. Очень сильными гербицидными свойствами обладает юглон, который образуется в листьях грецкого и черного ореха при окислении содержащегося в их листьях гидроюглона. Юглон вымывается из листьев осадками и отравляет появляющуюся под кроной растительность.

Земля является всенародным достоянием, основой всех богатств человечества. Между тем плодородные земельные площади постоянно сокращаются в результате строительства городов, новых предприятий, аэродромов, автомобильных и железных дорог, нефте- и газопроводов, наступления пустыни, открытого способа добычи полезных ископаемых и т. д. 

Огромные территории земного шара ныне покрыты безжизненными горными породами, извлеченными из недр Земли, которые в ряде случаев содержат токсические для всего живого вещества (сернистые соединения, соли тяжелых металлов и т. д.). Растворяясь в воде, эти вещества вызывают гибель живых организмов. Вещества, слагающие отвалы горных пород, водой и ветром разносятся по окрестностям. Попадая на поля, занятые культурными растениями, они вызывают снижение их урожайности.

Загрязнение окружающей среды существенным образом изменяет условия существования человечества, ставит перед ним сложные проблемы, решение которых возможно лишь в том случае, если эти проблемы будут осознаны всеми членами человеческого общества. Каждый человек должен осознать свою личную ответственность за чистоту воздуха, воды и почвы, свою причастность к делу охраны природы.

Загрязняющие природную среду вещества оказывают токсическое действие на человека, животных, растения и полезные микроорганизмы. Результаты этого действия в полном объеме еще недостаточно осмыслены человечеством. Помимо видимого ущерба оно наносит весьма существенный скрытый вред, который проявляется в прогрессирующем возрастании определенных заболеваний человека и животных, в увеличении числа наследственных аномалий, в вырождении ценных сортов, в снижении продуктивности культурных и дикорастущих растений, в нарушении биоценотических связей в природе, которое в свою очередь ведет к оскудению флоры и фауны.

Яндекс.Метрика Top.Mail.Ru