Эволюционное развитие организмов исследуется целым рядом наук, рассматривающих разные аспекты этой фундаментальной проблемы естествознания.

Ископаемые остатки животных и растений, существовавших на Земле в прошедшие геологические эпохи, изучает палеонтология, которую следует поставить на первое место среди наук, непосредственно связанных с исследованием эволюции органического мира. Основоположником палеонтологии считают великого французского ученого Ж. Кювье (1769-1832), первым приступившего к систематическим исследованиям вымерших организмов. Однако при этом сам Кювье был активным противником идеи эволюции органического мира.

Эволюционный характер палеонтология приобрела уже после выхода в свет в 1859 г. "Происхождения видов" - гениального труда Ч. Дарвина (1809-1882), который произвел глубокий переворот во всем естествознании. Дарвин впервые доказал (а не постулировал, как его предшественники Ж. Б. Ламарк, Э. Жоффруа Сент-Илер и др.) реальность эволюции организмов и в своей теории естественного отбора вскрыл причины и механизмы эволюционного процесса.

Прежде чем мы приступим к рассмотрению последовательных этапов эволюции органического мира, необходимо хотя бы вкратце остановиться на том, что же представляют собой палеонтологические документы - ископаемые остатки организмов, как и почему они образуются и как исследуются учеными. Кроме того, нам нужно отчетливо представить себе масштабы геологического времени, т. е. те сроки, в которые реально происходит эволюция организмов. Разбору этих вопросов и будет посвящена данная глава

Происхождение палеонтологических документов

Сохранение ископаемых остатков организмов, живших в далекие геологические эпохи, представляет собой крайне редкое, но все же закономерное явление. Невозможно сказать с определенностью, какая доля от общего числа организмов, обитавших на Земле в каждую конкретную эпоху, после своей гибели захороняется таким образом, чтобы в течение десятков и сотен миллионов лет сохраняться в виде ископаемых остатков, но доля эта чрезвычайно мала.

Из сказанного выше вытекает несколько следствий, важных для понимания соотношений между доступными для изучения наборами ископаемых форм из различных местонахождений (ориктоценозами) и реально существовавшими в прошлом сообществами организмов (палеобиоценозами). В ориктоценозе исследователь имеет дело не с общностью совместно живших организмов, а с совокупностью погибших, объединенных общим местом захоронения. Конечно, в состав ориктоценоза могли попасть и организмы, действительно обитавшие совместно (входившие в один палеобиоценоз), но нет никакой гарантии, что в действительности они не жили в совершенно различных местах и объединились лишь в процессе захоронения (например, снесены течением реки в один омут). Из этого правила имеются исключения, но чаще ориктоценозы представляют искусственные объединения вымерших организмов, которые могли жить в разных местах и даже в разное время.

Вторым важным следствием рассмотренных закономерностей захоронения ископаемых остатков является представление о выборочности захоронения. Очевидно, в зависимости от особенностей строения и образа жизни различные виды имели совершенно разные шансы сохраниться в палеонтологической летописи.

Помимо рассмотренной нами основной формы захоронения остатков организмов в осадках на дне водоемов, имеются и некоторые другие, более редкие способы фоссилизации.

Кости позвоночных хорошей сохранности обнаруживают в асфальтовых "озерах", образующихся в результате просачивания нефти на поверхность. Животные, по-видимому, принимают эти "озера" за водоемы и погибают в них. Асфальт, пропитавший кости, обеспечивает их надежное сохранение. Пример местонахождения такого рода - асфальтовые "озера" в Ла-Бреа (Калифорния), из которых были добыты многочисленные остатки вымерших млекопитающих.

Известно сохранение ископаемых организмов и в озокерите (горный воск), происхождение которого также связано с нефтью. В 1907 г. в районе Богородчан (ныне Ивано-Франковская область) в горном воске был найден целый труп молодого шерстистого носорога.

Помимо остатков самих организмов, в ископаемом состоянии сохраняются и различные следы их жизнедеятельности, которые иногда могут дать ценную дополнительную информацию о времени существования и образе жизни оставивших их существ.

Наиболее известные ископаемые остатки такого рода - постройки различных рифообразующих организмов. Эти постройки образованы либо наружным скелетом колониальных животных (например, коралловые рифы, создаваемые колониальными кишечнополостными), либо отложениями минеральных солей, извлеченных из морской воды различными водорослями. Такие отложения накапливаются в местах произрастания водорослей в виде плотных масс известняка трубчатого или глобулярного строения, образуя так называемые строматолитовые рифы.

Многие морские животные (некоторые губки, морские ежи, моллюски) способны высверливать в скалах углубления, растворяя камень выделениями специальных желез или с помощью особого "сверлильного аппарата". В этих углублениях животные закрепляются и находят себе убежище. Моллюски-камнеточцы (например, морские финики Botula, Lithophaga и др.) могут проделывать в камне довольно длинные ходы. Эти полости в твердых камнях сохраняются как характерные ископаемые следы жизнедеятельности соответствующих животных.

Обнаружив остатки ископаемых организмов в обнажении каких-либо осадочных горных пород, палеонтологи производят геологическое обследование и составляют точное описание обнажения, чтобы правильно построить план дальнейших раскопок и собрать данные для тафономического анализа, т. е. для изучения особенностей захоронения остатков организмов и условий формирования данного местонахождения ископаемых.

Обнаруженные ископаемые остатки тщательно собирают, не пренебрегая никакими осколками, так как они могут иметь огромную научную ценность. Части скелета, оставшиеся в породе, палеонтологи извлекают не сразу: ископаемые остатки часто очень хрупки, их препаровка требует много времени, терпения и специальных навыков. Поэтому никак нельзя рекомендовать любителям заниматься таким делом самостоятельно - обычно это приводит к непоправимой порче образцов. Долг каждого человека, обнаружившего какие-либо необычные ископаемые остатки, как можно скорее сообщить об этом ученым.

Изучая эволюцию организмов, необходимо иметь представление о ее ходе во времени, о продолжительности тех иди иных ее этапов.

Историческая последовательность образования осадочных пород, т. е. их относительный возраст, в данном районе устанавливается сравнительно просто: породы, возникшие позднее, отлагались поверх более ранних пластов. Соответствие относительного возраста пластов осадочных пород в разных регионах можно определить, сопоставляя сохранившиеся в них ископаемые организмы (палеонтологический метод, основы которого были заложены в конце XVIII начале XIX в. работами английского геолога У. Смита). Обычно среди ископаемых организмов, характерных для каждой эпохи, удается выделить несколько наиболее обычных, многочисленных и широко распространенных видов; такие виды получили название руководящих ископаемых. По их наличию и устанавливают примерную одновременность образования сравниваемых пластов осадочных пород.

Как правило, абсолютный возраст осадочных пород, т. е. промежуток времени, прошедший со времени их образования, непосредственно установить нельзя. Информация для определения абсолютного возраста содержится в изверженных (вулканических) породах, которые возникают из остывающей магмы.

Эры, относящиеся к криптозою, - археозойская и протерозойская - вместе продолжались более 3,4 млрд. лет; три эры фанерозоя - 570 млн. лет, т. е. криптозой составляет не менее 7/8 всей геологической истории. Однако, как мы упоминали в предыдущей главе, в отложениях криптозоя сохранилось чрезвычайно мало ископаемых остатков организмов, поэтому наши представления о первых этапах развития жизни в течение этих огромных промежутков времени в значительной степени гипотетичны.

Палеонтологические данные о развитии жизни в криптозое

Мы начнем с рассмотрения имеющихся палеонтологических документов.

Древнейшие остатки организмов были найдены в кремнистых сланцах системы Свазиленд (серии Онвервахт и Фиг-Три), в районе Барбертона (Восточный Трансвааль). Сланцевые пояса системы Свазиленд представляют собой древнейший комплекс осадочных пород, относительно мало затронутых метаморфизмом.

Находки вендской фауны и некоторые другие данные по докембрийским организмам говорят о том, что эволюция многоклеточных животных началась задолго до нижнего рубежа кембрия и привела к формированию разнообразных групп. Есть основания считать, что в позднем протерозое уже сложились такие типы, как губки, кишечнополостные, плоские и кольчатые черви, членистоногие, моллюски, иглокожие и, вероятно, многие другие. Крайняя редкость захоронения представителей этих групп в отложениях позднего протерозоя объясняется, вероятно, отсутствием твердого скелета у докембрийских животных. "Революция" раннего кембрия прежде всего проявилась в появлении такого скелета у самых различных групп животных. При этом скелетные ткани и анатомия скелета были совершенно различны у разных групп: от гибких членистых хитиновых панцирей членистоногих до монолитных известковых раковин моллюсков и плеченогих. Однако едва ли будет правильно сводить раннекембрийскую революцию только к скелетизации организмов. Вероятно, на рубеже криптозоя и фанерозоя значительно возросли обилие, разнообразие и распространение различных форм жизни.

В двух заключительных разделах этой главы мы вкратце рассмотрим общую картину развития жизни в течение криптозоя, коснувшись попутно некоторых биологических проблем, связанных с ранними этапами эволюции растений и животных (возникновение эукариот, полового процесса, многоклеточного уровня организации).

Анализ основных этапов эволюции органического мира в докембрии был проделан Б. С. Соколовым (1972, 1975, 1976).

Время появления жизни на Земле различными учеными оценивается по-разному. Можно указать на обширный промежуток между 3,5-4,25 млрд. лет назад. Как упоминалось выше, протоорганизмы были, вероятно, гетеротрофными формами, питавшимися готовыми высокомолекулярными органическими соединениями, которые содержались в "первичном бульоне" и имели абиогенное происхождение. В археозое жизнь существовала в условиях бескислородной восстановительной атмосферы, вероятно в водоемах на глубине порядка 10-50 м. Десятиметровый слой воды защищал протоорганизмы от губительного действия жесткого ультрафиолетового излучения Солнца.

Вероятно, 700-900 млн. лет назад на Земле появились первые многоклеточные животные и растения. У растений возникновение многоклеточного уровня организации, по-видимому, произошло на основе дифференциации лентообразных колоний, возникших путем бокового срастания прикрепленных нитчатых форм или благодаря делению клеток последних в двух взаимно перпендикулярных направлениях (в одной плоскости). У прикрепленных колоний различные участки находились в разных условиях по отношению к солнечному свету, субстрату и водному окружению. В связи с этим естественный отбор должен был благоприятствовать возникновению определенной дифференциации частей колонии. Первым шагом было возникновение полярности колонии: на одном ее конце выделялись клетки, служившие для прикрепления к субстрату (для них характерны ослабление фотосинтеза, потеря способности к делению), на другом - верхушечные клетки, интенсивно делившиеся и образовавшие своего рода точку роста колонии. Естественный отбор благоприятствовал приобретению клетками колонии способности делиться в разных направлениях; это содействовало ветвлению, что увеличивало поверхность колонии. Деление клеток в трех плоскостях или переплетение отдельных нитей вело к возникновению многослойного, объемного тела. В ходе его дальнейшей дифференциации сформировались многоклеточные органы, выполнявшие разные функции (фиксация на субстрате, фотосинтез, размножение). Одновременно между разными клетками растения складывалась определенная взаимозависимость, что, собственно говоря, и знаменует достижение многоклеточного уровня организации.

Итак, на рубеже протерозоя и палеозоя произошел кажущийся или действительный взрыв формообразования, который привел к появлению в палеонтологической летописи кембрийского периода представителей почти всех известных типов организмов. Палеозойская эра продолжалась свыше 300 млн. лет. В течение этого времени на Земле произошли значительные изменения физико-географических условий: рельефа суши и морского дна, общего соотношения площади материков и океанов, положения континентов, климата и многих других факторов. Эти изменения неизбежно должны были сказываться на развитии жизни. С краткого обзора условий, существовавших на Земле в палеозойской эре, мы и начнем эту главу.

На протяжении палеозоя море неоднократно наступало на континент, заливая опускавшиеся участки континентальных платформ (морские трансгрессии), и вновь отступало (морские регрессии). Трансгрессии были характерны для начала кембрия, первой половины ордовика (когда была затоплена наибольшая за весь фанерозой часть современных континентов), раннего силура и девона; две крупные трансгрессии были в карбоне.

Вероятно, в кембрийском периоде основные проявления жизни, как и в докембрии, были сосредоточены в морях. Однако организмы уже заселили все разнообразие доступных в море местообитаний, вплоть до прибрежного мелководья, и, возможно, проникли и в пресные водоемы.

Водная флора была представлена большим разнообразием водорослей, основные группы которых возникли еще в протерозое. Начиная с позднего кембрия постепенно сокращается распространение строматолитов. В. П. Маслов отметил, что в палеозойских и мезозойских отложениях, содержащих строматолиты, обычно не встречаются остатки животных. Современные водоросли, образующие строматолиты, встречаются в специфических условиях: чаще всего в водоемах с переменным солевым режимом, неблагоприятным для жизни большинства животных. Возможно, начавшееся в палеозое сокращение распространения строматолитообразующих водорослей связано с появлением растительноядных животных, поедавших эти водоросли. А. Эдгорн (1977) высказал предположение, что это могли быть какие-то формы червей, следы жизнедеятельности которых он обнаружил среди раннекембрийских строматолитов.

Согласно расчетам Л. Беркнера и Л. Маршалла, освоение организмами суши как среды обитания могло начаться во второй половине ордовикского периода, когда содержание кислорода в земной атмосфере достигло 0,1 от современного. Действительно, первые вполне достоверные остатки наземных организмов известны начиная с силура 1. Вероятно, заселение безжизненных прежде материков было длительным процессом, развивавшимся в течение нескольких десятков миллионов лет, на протяжении ордовика, силура и девона.

Пионерами на суше были, несомненно, растения, сначала заселившие мелководья у морских побережий и пресные водоемы, а затем постепенно осваивавшие влажные местообитания на берегах. Древнейшими представителями этой "земноводной" флоры были псилофиты (Psilophyta) - невысокие травянистые или кустарникообразные растения, еще не имевшие настоящих корней, с мелкими листочками и органами бесполого размножения (спорангиями) на концах дихотомически разветвленных побегов. В их древесине уже имелись примитивные сосудистые образования - трахеиды. Псилофиты известны начиная с позднего силура и достигли расцвета в раннем и среднем девоне.

Заселение суши растениями положило начало почвообразованию с обогащением минеральных субстратов органическими веществами. К этому времени (силур девон) относится и возникновение наиболее древних толщ горючих ископаемых, образующихся при неполном разложении скоплений растительных остатков.

Как мы уже упоминали, начиная с позднего карбона в южном полушарии усиливаются процессы оледенения, связанные, возможно, с расположением Южного полюса в Гондване (в той ее части, которая соответствовала современной Антарктиде). На свободной от ледников территории Гондваны установился умеренный прохладный климат с выраженной сезонностью. Об этом говорит, в частности, наличие годичных колец в древесине растений гондванской флоры этого времени, получившей название глоссоптериевой (по широко распространенным в ней видам семенного папоротника Glossopteris, небольшого растения с крупными цельными листьями).

В состав глоссоптериевой флоры, кроме различных птеридоспермов, входили также представители других групп голосеменных растений: кордаптов, гинкговых и хвойных. Глоссоптериевая флора была характерна для обширных территорий современных Индии, Афганистана, Южной Африки, Южной Америки, Австралии, Новой Зеландии и Антарктиды.

На северных континентах, входивших в состав Лавразии и располагавшихся в раннепермское время в значительной степени в районе экваториального пояса, сохранялась растительность, близкая к тропической флоре карбона, но уже обедненная видами лепидодендронов и сигиллярий.

После завершения в середине пермского периода оледенения Гондваны климат Земли стал более теплым. (Возможно, это было связано с перемещением Южного полюса с континента в Тихий океан.) Потепление продолжалось на протяжении мезозойской эры, которая в целом была более однообразной в климатическом отношении, чем другие эры фанерозоя.

В мезозое господствовали теплые климаты с относительно слабо выраженной климатической зональностью. До сих пор не обнаружено мезозойских тиллитов, которые свидетельствовали бы об оледенении какого-либо континента. Южный полюс на протяжении мезозойской эры оставался в океане, а Северный перемещался от восточной оконечности Сибири к Аляске. При отсутствии оледенений температура воздуха и воды в океане была, вероятно, значительно выше современной: на экваторе на 3-5°, в средних широтах на 10°, а в полярных на 20-40° (Р. В. Фэйрбридж, 1970).

В то же время происходили важные изменения рельефа Земли и положения континентов, которые привели к формированию в общих чертах существующих ныне континентов и океанов.

Рубеж между пермским и триасовым периодами был отмечен существенными изменениями в характере фауны наземных позвоночных. В пермское время преобладающими группами пресмыкающихся были звероподобные рептилии и котилозавры, тогда как группы с диапсидным черепом (лепидозавры и архозавры, объединяемые иногда под названием "завропсиды") оставались сравнительно немногочисленными. Так, по подсчетам П. Робинсон (1971), из верхнепермских отложений известно 170 родов звероподобных рептилий и лишь 15 родов завропсид. Это соотношение резко изменилось к началу мезозоя. Из числа котилозавров в триас перешли лишь проколофоны, вымершие к концу этого периода, а из звероподобных - немногие группы дицинодонтов и высших териодонтов. Зато обилие и разнообразие завропсид- ных рептилий неуклонно возрастает, и во второй половине триаса они становятся доминирующими. По данным П. Робинсон, соотношение числа родов звероподобных и завропсидных рептилий в раннем триасе было 36 против 20, в среднем триасе - 23 против 29, а в позднем триасе - уже 17 против 83. При этом нужно отметить, что высшие звероподобные рептилии обладали рядом прогрессивных признаков, отсутствовавших у завропсид (например, были способны к пережевыванию пищи, значительно повышавшему степень ее усвоения в кишечнике; вероятно, териодонты имели волосяной покров и т. д.; подробнее см. ниже).

Теплые моря, заливы и лагуны океанов Тетис, Тихого и начинавших формироваться Атлантического и Индийского в мезозое были богаты жизнью. После пермского вымирания разнообразие морских организмов в триасе вновь возрастает. В эволюционных стволах, переживших пермский кризис, появляются многочисленные новые виды и новые крупные ветви. По-видимому, в мезозое возник новый тип водорослей: во всяком случае, начиная лишь с юрских отложений достоверно известны ископаемые остатки представителей диатомовых водорослей (тип Diatomeae).

В донной фауне опять обильны мшанки; многочисленны морские ежи и морские звезды. Постепенно растет численность и разнообразие брюхоногих моллюсков. Среди двустворчатых моллюсков выделяется мезозойская группа рудистов (Rudistae), неподвижно прикреплявшихся к субстрату одной из створок своей асимметричной раковины, которая у ряда форм достигала размера 1,5 м.

К концу триаса произошло постепенное "выравнивание" климатических условий на значительной части континентов, о чем говорит, в частности, очень однообразный и в целом сходный характер флоры на больших пространствах континентов, входивших прежде в состав Гондваны и Лавразии. Растительность юрского периода (рис. 46) характеризовалась преобладанием различных групп голосеменных (цикадовые, беннеттиты, хвойные, гинкговые) и древовидных папоротников; широко распространены были также крупные хвощи (среди которых, например, Equisetites arenaceus достигал в высоту 10 м и в диаметре 25 см).

В условиях ровного и очень теплого климата в средней части мезозоя завропсидные рептилии достигли максимального расцвета. Это было время удивительных животных, получивших широкую известность под названием "динозавры" ("страшные ящеры"). Название это относится к нескольким независимым группам рептилий из подкласса архозавров и в современном понимании не имеет определенного таксономического статуса (подобно термину "стегоцефалы", см. выше). Хотя среди ученых еще нет единства мнений в отношении классификации динозавров, наиболее распространено распределение этих животных по двум отрядам: ящеротазовых (Saurischia) и птицетазовых (Ornithischia), отличавшихся друг от друга рядом признаков, в частности строением пояса задних конечностей. У птицетазовых лобковая кость имела особый отросток, тянувшийся назад под седалищной костью, тогда как у ящеротазовых такого отростка не было.

Архозавры в мезозое овладели не только сушей, но и воздухом (их попытки выйти в море были менее успешны). По крайней мере две группы этих рептилий приобрели способность к полету.

Первой из них были птерозавры (Pterosauria) - летающие ящеры, появившиеся в начале юрского периода. Крылья птерозавров, как у летучих мышей, были образованы летательными перепонками, натянутыми между передними и задними конечностями и телом. Но если у летучих мышей крыло поддерживается четырьмя удлиненными пальцами передней конечности, то у птерозавров - лишь одним гипертрофированным четвертым пальцем. Три других пальца кисти у них были свободны, имели когти и располагались на сгибе крыла. Вероятно, птерозавры могли использовать их при лазании и цеплянии. Крыло летающих ящеров было, по-видимому, механически менее прочным, чем таковое летучих мышей. Однако птерозавры были способны к достаточно разнообразным формам полета, как это было показано аэродинамическими расчетами и экспериментами с моделями, имитирующими летательный механизм этих животных.

На фоне поражающей воображение эволюции архозавров, во второй половине мезозоя происходили и многие другие, может быть, внешне менее эффектные, но столь же интересные и важные события.

В начале мелового периода от ящериц возникли змеи (Ophidia). Нужно сказать, что среди ящериц нередко появлялись формы с сильно удлиненным телом и редуцированными конечностями (многие из них существуют и ныне). Такое строение приобретали виды, приспосабливавшиеся к жизни в различных укрытиях (густые заросли, пространства под корой упавших деревьев и т. п.) и к рытью в лесной почве или в песке. Вероятно, предки змей также стали роющими (хотя бы отчасти) животными; роющий образ жизни сохраняется и в ряде архаических современных групп змей. Однако представители основного ствола эволюции змей вновь вернулись на поверхность субстрата, что было связано с переходом к питанию все более крупной добычей; современные специализированные роющие змеи (Scolecophidia) являются микрофагами, поедающими муравьев, термитов и т. п.

Последние века мезозойской эры были временем драматических событий, сущность которых пока еще не вполне ясна. Возможно, эти события были в какой-то мере подготовлены только что рассмотренными нами изменениями флоры. Вслед за "победным шествием" покрытосеменных в течение позднего мела вымирают их предшественники - беннеттиты и проангиоспермы, сильно сокращаются распространение и разнообразие папоротников и саговников. Общий облик флоры позднего мела уже всецело определяется ангиоспермами; из голосеменных сохранили свои позиции лишь хвойные.

С середины мелового периода наметились некоторые изменения и в фауне. Изменения флоры прежде всего сказались на насекомых. На протяжении позднего мела энтомофауна постепенно обновилась: исчез целый ряд архаических семейств и появились группы, существующие и поныне 3.

Итак, физико-географические условия в начале палеогена, по существу, не отличались от таковых в конце мелового периода. После некоторого похолодания климат вновь стал теплым. В Европе до берегов Балтики продолжали существовать тропические и субтропические флоры, имевшие характер густых и влажных лесов. В них были широко представлены пальмы, вечнозеленые лавры, дубы, каштаны, магнолии, мирты, фикусы и другие растения; из хвойных - гигантские секвойи, араукарии, болотные кипарисы; в лесной тени произрастали папоротники, в том числе древовидные; по морским побережьям - тропическая мангровая растительность (А. Н. Криштофович, 1957).

Тропические и субтропические флоры преобладали в начале палеогена также в Северной и Южной Америке, Африке и Южной Азии. Даже в Гренландии и на Шпицбергене была разнообразная растительность, свойственная теплому умеренному климату: секвойи, болотные кипарисы, гинкго, буки, дубы, платаны, клены, магнолии, липы, березы и другие растения. Любопытно развитие у многих растений высоких широт гигантских листьев (до 30-40 см). Климат в этих местах в палеогене был близок к современному климату Южной Франции или Калифорнии. С этой богатой флорой связано происхождение мощных пластов каменного угля.

В начале палеоценовой эпохи фауна млекопитающих оставалась, по существу, той же, что и в позднемеловое время. В ней были представлены лишь группы, возникшие еще в мезозое: растительноядные многобугорчатые, внешне напоминавшие грызунов, но родственные прототериям - однопроходным, а также архаические представители сумчатых и плацентарных, питавшиеся насекомыми и другой мелкой добычей. Для всех архаических млекопитающих были характерны такие примитивные особенности, как относительно небольшой мозг, простые треугольные зубы (за исключением многобугорчатых), пятипалые конечности, опиравшиеся при передвижении на всю кисть и стопу (плантиградность).

К середине палеоценовой эпохи разнообразие млекопитающих значительно возросло (настолько, что можно предположить начало расхождения некоторых предковых линий еще до конца мелового периода). Но основная адаптивная радиация плацентарных и сумчатых происходила в палеоцене и эоцене, когда сложились все основные отряды кайнозойских млекопитающих.

Выше мы уже упоминали, что Австралия, Южная Америка и Антарктида по крайней мере с эоцена полностью обособились друг от друга и от всех других континентов широкими морскими проливами и морями. К сожалению, о развитии жизни в Антарктиде перед началом последнего оледенения мы практически еще ничего не знаем. Зато чрезвычайно интересна судьба оказавшихся в изоляции Австралии и Южной Америки.

Поскольку Австралия уже со времени распада Гондваны занимала более обособленное положение, будучи связана с другими материками, главным образом через Антарктиду, в Австралию ко времени ее изоляции, по-видимому, еще не проникли плацентарные млекопитающие. В ней сформировалась уникальная фауна сумчатых и однопроходных, отчасти сохранившаяся до наших дней. Однако палеонтологическая история австралийских млекопитающих известна, к сожалению, еще очень плохо.

Как мы уже упоминали, в течение неогена произошло значительное повышение материков (геократическая фаза), сопровождавшееся морской регрессией, иссушением климата и прогрессирующим развитием открытых ландшафтов. Одновременно происходило постепенное понижение средних температур на поверхности Земли. Эти изменения природных условий оказали глубокое влияние на флору, о чем уже говорилось выше, и фауну.

В неогене получили преобладание виды наземных животных, приспособленные к жизни в открытых и относительно сухих местообитаниях типа лесостепей, степей и саванн. В олигоцене вымерли многие формы, тяготевшие к лесам, влажным лугам, заболоченным участкам и тому подобным биотопам, характерным для палеогена. Эта судьба постигла многие группы непарнокопытных. Зато парнокопытные начиная с олигоцена широко распространились и быстро прогрессировали.

В плейстоцене происходило дальнейшее похолодание климата, сопровождавшееся постепенным отступанием теплолюбивой флоры и фауны в Евразии и Северной Америке к югу. Широкое распространение получили листопадные и хвойные леса, общий облик которых уже напоминал современные леса умеренного пояса. Состав фауны также приближался к современному; появились многие ныне существующие роды млекопитающих.

Однако в плейстоцене сохранялись и более древние формы и группы животных (мегатерии, глиптодонты, макраухении, токсодонты, мастодонты, динотерии, саблезубы и др.), особенно многочисленные в Америке. Появились и некоторые своеобразные виды, которым не суждено было пережить плейстоценовую эпоху. Среди них интересны гигантские бобры - трогонтерии (Trogontherium), имевшие длину более 2 м; носороги - эласмотерии (Elasmotherium), обладавшие огромным вздутием лобной области черепа, биологическая роль которого остается неизвестной; большерогие олени - мегалоцеросы, достигавшие высоты в холке около 2 м, но особенно замечательные

Человек относится к отряду приматов (Primates), и эволюционная история человека есть часть филогенеза этой группы. Поэтому рассказ о происхождении человека целесообразно начать с анализа общих признаков приматов, среди которых можно найти и предпосылки для развития особенностей строения, физиологии и поведения человека.

Приматов можно кратко охарактеризовать как группу лесных теплолюбивых плацентарных млекопитающих, приспособившихся к лазающему, древесному образу жизни, сохранив достаточно примитивную основу организации. Архаические черты в строении приматов проявляются в сохранении ими пятипалой конечности, опирающейся при ходьбе на всю ступню (а не на пальцы или на их концевые фаланги, как у быстро бегающих хищников и копытных), в сохранении ключиц (которые утрачиваются при совершенствовании бега у названных групп), в отсутствии специализации питания (большинство приматов всеядны и питаются как растительной, так и животной пищей) и т. д. Сохранение некоторых примитивных признаков и отсутствие специализации различных органов к какой-то одной (хотя и весьма совершенно выполняемой) функции обеспечивают высокую эволюционную пластичность приматов, проявивших в ходе филогенеза способность адаптироваться к самым различным условиям существования и способам использования природных ресурсов.

Приматы возникли от примитивных насекомоядных млекопитающих (Insectivora), отдельные группы которых перешли к лазающей, древесной жизни. К основанию эволюционного ствола приматов, возможно, близки древесные землеройки - тупайи (Tupaiidae), обитающие ныне во влажных тропических лесах Южной и Юго-Восточной Азии и прилежащих островов. Среди зоологов-систематиков до сих пор нет единства мнений в вопросе о положении тупайид в системе млекопитающих. Одни авторы рассматривают их как семейство отряда насекомоядных, другие помещают их среди приматов.

Эволюционная ветвь насекомоядных, ведущая к приматам, обособилась, вероятно, еще до конца мезозоя. Из верхнемеловых отложений известны ископаемые остатки животных, которых ряд палеонтологов рассматривает уже в качестве примитивных приматов. Это были пургатории (Purgatorius) - мелкие зверьки с признаками приспособлений к лазающей, древесной жизни, вероятно, имевшие ночную активность (как и другие мезозойские млекопитающие) и питавшиеся насекомыми и фруктами.

Расхождение филогенетических стволов, ведущих к двум семействам антропоморфов, т. е. человекообразным обезьянам (понгидам) и людям (гоминидам), произошло, возможно, уже в миоцене (по разным оценкам, от 15 до 25 млн. лет назад). Из верхнемиоценовых отложений Европы известны ископаемые остатки обезьян дриопитеков (Dryopithecus), которые по основным особенностям строения и размерам тела напоминали современных шимпанзе. Многие антропологи рассматривают дриопитеков как возможных непосредственных предков всех высших антропоморфов, т. е. понгид и гоминид.

В неогене антропоморфные приматы достигли высшего расцвета. Их ископаемые остатки широко представлены в местонахождениях гиппарионовой фауны. Это говорит о связи миоплиоценовых антропоморфов с характерными для этой фауны открытыми ландшафтами (тогда как большинство приматов, и особенно низшие их представители, являются обитателями тропических лесов, столь обильных в палеогене).

Яндекс.Метрика Top.Mail.Ru