Однажды в детстве я оказался на пустыре. Все поросло травой на разрушенной войной стройке. Оборвался путь железнодорожной ветки, не дойдя до корпусов, зияющих пустыми окнами. И вдруг на насыпи у рельсов, где надолго застыли колеса грузовой железнодорожной платформы, я увидел знакомое мне растение, нагнулся и сорвал его — это был чесночок, созревший, но совсем крошечный, в десять раз уменьшенная копия того, что растет на огороде. У него была головка величиной с горошину, но зубчики в ней — как у настоящего чеснока. Тогда мне показалось, что кто-то сделал игрушечное растение, а на самом деле я столкнулся с загадочной проблемой нашей земной жизни — проблемой формообразования. Какие «приборы» следят за формой живого и где они скрыты?

Здесь же, у рельсов, в траве, бегали, стрекотали и прыгали другие живые существа. Они были вооружены миниатюрными локаторами, дальномерами и светофильтрами, дающими им возможность по-своему воспринимать окружающий мир. Падающая от меня тень заставляла их отскакивать и прятаться между травинок.

Как ни странно, но до сих пор точно неизвестно, почему «запахи» пахнут и почему люди по-разному ощущают их. Недавно физиологи установили, что мужчины и женщины неодинаково воспринимают запахи. Взять хотя бы экзальтолид — вещество, применяемое в парфюмерной промышленности в качестве фиксатора. Женщины его ощущают, а все лица мужского пола не знают, как пахнет это вещество. Девочки тоже его не ощущают до достижения половой зрелости.

Однако, если взрослому мужчине ввести женский половой гормон, он начинает чувствовать запах экзальтолида. А помимо этого, ему открывается целый ряд запахов, о которых он раньше не имел никакого представления. Запахи в жизни человека играют важную, но не первостепенную роль. А вот у ряда животных именно обоняние развито сильнее других органов чувств. Можно ли представить, как сложны их органы «химического чувства»?

Землетрясения происходят чаще всего в Средней Азии, и местные жители, старики — туркмены или узбеки — давно замечали, что перед катастрофой змеи и ящерицы покидают свои норы. Да и не только пресмыкающиеся чувствуют приближающееся несчастье. Птицы и млекопитающие не уступают в этом пресмыкающимся. Птицы становятся беспокойными, теряют ориентацию, залетают в открытые окна домов. Домашние животные — козы, овцы, свиньи, коровы и лошади — предчувствуют приближение землетрясения за два дня. К сожалению, человек в процессе эволюции утратил эту полезную способность. В то время как муравьи тащат свои белые куколки из подземелий, пещерные кузнечики выбегают из норок. и подальше отбегают от обрывистых откосов, змеи выползают на открытые поляны, собаки скулят и жмутся к хозяевам, закрытые в стойле лошади лягают перегородки, люди спокойно работают, читают, спят или смотрят телевизоры — живут повседневной жизнью. Современные физические приборы фиксируют малейшие сейсмические толчки, но прогнозировать их так, как живые существа, они не могут.

Многие, наверное, смотрели кинофильмы, в которых передающую радиостанцию пеленгуют с помощью вращающейся антенны. Сходный поиск источника волн, только не по радиоволнам, а по звуку, выполняет кузнечик, когда определяет, откуда исходит звук. Уши у него расположены в голенях передних ног. При движении по направлению к источнику звука ноги кузнечика совершают дугообразные движения. Сами же слуховые органы, называемые тимпанальными, как бы сканируют пространство по обе стороны от насекомого, нервная система анализирует получаемую информацию и направляет кузнечика точно в сторону звука, или от него, посылая импульсы-команды в мышцы ног.

Существуют страны, где землетрясения происходят очень часто. Подсчитано, что сорок процентов всех землетрясений на нашей планете приходится на западное побережье Америки. В Чили или Перу землетрясения наблюдаются почти каждый третий день, чаще всего они слабые, и дома не рушатся. Однако с начала нашего века в Южной Америке в указанной зоне было, по крайней мере, семнадцать значительных катастроф силой до девяти баллов, когда целые дома вдруг исчезали в глубоких трещинах земли. Глубина таких трещин, поглотивших людей и строения, иногда достигала нескольких километров. И на всей территории бывшего Советского Союза встречается достаточное количество зон, где возможны землетрясения. Площадь таких зон составляет примерно двадцать процентов всей территории.

Едва ли найдется человек, который не интересуется прогнозами погоды. Многие несколько раз в день слушают сводку погоды по радио, хотя и знают, что синоптики часто ошибаются. Краткосрочные прогнозы оправдываются в лучшем случае на восемьдесят процентов. И это уже хорошо — ведь доходы от правильно сделанных прогнозов перекрывают сумму, затраченную на метеослужбу, а более долгосрочные прогнозы, например за месяц вперед, дают экономический эффект, в двадцать раз превышающий расходы на строительство метеостанций, приобретение приборов и организацию всей работы метеорологов. Однако месячные прогнозы сбываются в меньшей степени, чем краткосрочные. Метеостанции расположены на специально оборудованных кораблях, на научных судах и, наконец, на спутниках и пилотируемых космических станциях.

В основу долгосрочного прогноза положены многовековые наблюдения людей за живой природой, многократно проверенные на практике. Лес и луг издавна помогали людям составлять прогноз на все лето. Пробуждение живой природы после зимнего сна — первый указатель в долгосрочном прогнозе. Важно приметить, какое дерево раньше распустится — ольха или береза. Если первой распускается береза, то можно ждать хорошего теплого лета, с ясными солнечными днями и короткими бурными дождями. И наоборот, если ольха распустится раньше березы, то лето будет холодным и дождливым. Береза может подсказать также, каким будет лето, — обычно много сока береза дает перед дождливым летом. А осенью береза может рассказать о наступлении следующей весны — ранней или поздней. Для этого достаточно пронаблюдать, как у нее начинают желтеть листья: желтеют с верхушки — весна будет ранней, а если снизу, то весну следует ждать позднюю.

Неужели эхо можно увидеть? Исследования ученых в области биолокации позволяют все более уверенно говорить о существовании звуковидения у некоторых животных. Один из претендентов, несущих прибор звукового видения, — дельфин. У собак и дельфинов, по-видимому, был общий предок. И хотя пути обоих видов разошлись, общее наследие все же чувствуется: и у тех и у других — слабое цветное зрение. Но по велению природы и те и другие мастерски вышли из трудного положения. Собака освоила мир запахов, о чем мы уже говорили, дельфин — мир звуков. Поразительные крики, свисты, скрипы, постоянно издаваемые этим морским млекопитающим, помогают ему в чудесной воспринимающей способности.

Человек слышит звуки частотой от тридцати до двадцати тысяч герц, а летучая мышь — до ста тысяч герц, хотя нижний предел примерно равен нашему. Так что этот крохотный летающий комочек, покрытый шерстью, живет в настоящем мире звуков. Так же, как и дельфин, это существо находит нужную ему пищу с помощью эхо-локатора. Сонаром летучих мышей ученые занимались более длительное время, чем звуковым локатором дельфина. Еще в 1793 году выдающийся итальянский исследователь Ладзаро Спалланцани установил, что летучие мыши ориентируются и находят свою добычу с помощью слуха. Однако понадобилось около ста пятидесяти лет, чтобы понять, что делают они это с помощью ультразвуковой локации. И здесь нельзя не оценить работ американских ученых Г. Пирса, Д. Гриффина и Р. Галамбоса, внесших неоценимый вклад в расшифровку работы ультразвукового локатора у летучих мышей.

Многие беспозвоночные животные наделены «магнитным компасом». Очень четко такой компас работает у плоских червей планарий. Направление на магнитные полюса Земли люди умели определять давно. Еще до изобретения компаса древние викинги пользовались куском магнитной руды во время путешествий по северным морям. Сейчас каждый человек знает, что Земля — это огромный вращающийся постоянный магнит. Однако не только из постоянного магнитного поля складывается магнитное поле Земли. В нем есть переменный компонент, составляющий всего два процента от постоянного магнитного поля. Но его биологическое действие значительно.

Известно, что многие животные и растения способны улавливать электрические поля и электрические токи в воде и чутко реагировать на них. Наиболее совершенно электрочувство развито у рыб. Они, как сказал известный американский зоолог Т. Буллок, «видят мир посредством нового чувства», и не только «видят», а осуществляют электрическую локацию, обмениваются информацией между собой и, наконец, генерируют ток напряжением до шестисот вольт, которым могут сбить с ног человека и полностью парализовать свою добычу. Рыбаки, живущие на побережье Аргентины, знают, что в их заливах водятся электрические угри, способные накапливать в своих живых батареях до трехсот вольт. Никто из рыбаков не хочет получить такой удар от электрического угря. Понимая, что для накопления энергии нужно время, рыбаки сначала загоняют в воду стадо коров, которые, получив электрические разряды от угрей, с ревом выбегают из воды. Теперь «живые батареи» разряжены, и рыбаки входят с сетями в залив, не опасаясь сильных электрических ударов.

Все живые существа окружены электромагнитным полем. Электромагнитные волны как бы пронизывают нас. Многие из них не оказывают никакого действия, без других мы не можем жить, третьи могут принести смертельный вред. Все зависит от длины электромагнитной волны.

Электромагнитный спектр охватывает широкий диапазон длин волн, простираясь от х-лучей с длиной волны меньше чем 10 метра до радиоволн, длина волны которых измеряется километрами. Однако живые существа для фотобиологических процессов используют только незначительную часть электромагнитного спектра — от трехсот до девятисот нанометров. Три четверти энергии Солнце в основном испускает именно на этой длине волны. А земная атмосфера как бы фильтрует опасные для жизни электромагнитные излучения нашего светила.

Все ли живые существа одинаково воспринимают окружающий мир с помощью зрения? Конечно, нет!

Так, например, плащеносная ящерица, живущая в Австралии, умеющая ходить на задних ногах, раскрывающая свой плащ-капюшон для устрашения и сама до смерти боящаяся людей, несмотря на внушительные размеры (может достигать 1,6 метра), видит мир оранжевым.

Ученые исследовали глаза ящериц и нашли, что они снабжены оранжевыми «очками». В их сетчатке много жировых капель, окрашенных в оранжевый цвет. Следовательно, светофильтры находятся прямо в сетчатке этих живых организмов. Значит, ящерицы видят мир не так, как мы. И не только ящерицы. Многим птицам кажется зеленым то, что мы видим в красном цвете. Рыбы тоже несут различные светофильтры в глазах. Например, терпуг может менять цвет роговицы глаза.

Биолокация — один из самых интересных и в то же время спорных феноменов. Одна за другой вспыхивают дискуссии вокруг вопроса о возможности человека и животных находить интересующие их объекты на большом расстоянии либо скрытые под водой или землей. В основе биолокации у человека и различных видов животных могут быть совершенно отличные друг от друга механизмы достижения цели. Общее то, что человек имеет дело со слабыми, но высокоинформативными энергетическими взаимодействиями. Неизвестны человеку пока и живые приборы, принимающие информацию о местонахождении искомого объекта. Однако эксперименты многократно подтверждают, что биолокацией пользуются живые организмы. Самцы бабочки павлиний глаз отыскивают самку на расстоянии более десяти километров. Лососи точно находят родную реку.

Большинство живых существ — люди, животные, растения — обладают «приборами времени», позволяющими им измерять прошедшие промежутки их жизни. Однако с «живыми часами» связаны также и физиологические функции, которыми во многих случаях биологические часы «руководят» без нашего ведома. Только некоторые отдаленные ощущения говорят о неустанной работе приборов времени в нашем организме.

Что-то непонятное, странное происходило с подопытными насекомыми и животными в одной из экспериментальных лабораторий, занимающейся изучением биологических часов.

У некоторых индийских фокусников есть удивительный номер. Они берут зернышко лимонного дерева, сажают его в землю, и на глазах у изумленной публики вырастает дерево. Затем на дереве появляется зеленый плод, он желтеет. В естественных условиях для этого необходимо несколько лет на сцене происходит за считанные минуты.

Интересно, а нашли ли биологи концентраторы и ингибиторы времени для живых организмов? Ведь пока мы знаем одно — биологические часы очень трудно разладить колебаниями температуры, только сильное охлаждение может их остановить. Успехи управления живыми часами пока невелики. У некоторых животных можно «подвести» стрелки биологических часов. Вспомним таракана, который делает все не так, как ело сородичи, таракана охладили на двенадцать часов, а затем содержали при нормальной температуре. Его живые часы опять пошли, но стали отставать на полсуток, поэтому он ведет себя необычно в тараканьей семье — все делает с опозданием на двенадцать часов. Можно у того же таракана совсем разладить биологические часы. Достаточно его поместить в условия непрерывного освещения, и он забудет о суточной ритмике, хотя внутренние маятники его часов будут работать.

В микромире действуют свои законы. До этого разговор шел о живых организмах, которые вооружены многоклеточными живыми приборами и мозгом, контролирующим и принимающим информацию от этих приборов. А теперь заглянем в межклеточные взаимоотношения, о которых наш мозг часто ничего и не знает или же не вмешивается в отношения между микроскопическими одноклеточными существами, у которых все живые приборы — это части клеток.

Живые клетки очень подвижны, они делятся, перемещаются, а самое главное — узнают друг друга; причем узнают не только при непосредственном контакте, но и на расстоянии. И это не все. Иногда живым клеткам приходится поддерживать контакт через толстые клеточные пласты — речь идет о дистанционной связи. Трудно даже вообразить, насколько обособленной должна быть такая связь: ведь все клетки, находящиеся между приемником и передатчиком, сами «разговаривают» между собой.

Живые клетки вооружены приборами не только дистанционного восприятия информации, но и для непосредственного контакта между собой.

Достаточно зародышей морских ежей поместить в морскую воду, лишенную кальция, после легкого встряхивания эмбрионы распадутся на отдельные клетки. Но стоит добавить в воду недостающий кальций, опять встряхнуть ее, и все клетки зародышей, как по мановению волшебной палочки, снова займут свои места. Каким же образом одинаковые атомы кальция «склеивают» клетки зародыша в строго определенном порядке, в соответствии с генетической программой?

Жизнь отдельных клеток измеряется днями, неделями, месяцами и самое большое — десятилетиями, а организм может жить десятки лет. Как же большинству многоклеточных существ удалось вырваться из плена всесокрушающего времени? Благодаря клеточным делениям. Мало того: клеточные деления приносят еще одну незаменимую пользу — позволяют размножить клетки, увеличить живую биомассу.

Как же происходят клеточные деления? Еще до того как клетка начнет делиться, в ней удваивается генетический материал и весь аппарат клеточного деления. Все подготовлено к тому, чтобы после деления получилась копия живой клетки с тем же числом хромосом и с той же морфологией. При делении становятся видимы нити хромосом, а mitos по-гречески — это нить, отсюда и название этого вида деления. Клетка может делиться и прямым делением без образования нитей хромосом, просто поперечной перетяжкой. Однако недолго живет такая клетка и, как правило, делится прямым делением именно перед гибелью.

Возможно, не только на деление клеток действуют электромагнитные поля. Живые клетки, как предполагается, улавливают их и активно реагируют на них, отвечая изменением обмена веществ, перестройкой морфологических структур и даже изменением внутримолекулярных структур.

У инфузорий-парамеций под действием электромагнитных полей меняется образование пищевых вакуолей внутри цитоплазмы и некоторые поведенческие реакции, но одновременно с этим нарушается перераспределение цитоплазматической РНК и изменяется гликолиз. Так что даже слабые электромагнитные поля оказывают воздействие на одноклеточные организмы.

То, о чем будет говориться в этой главе, не поддается ощущениям. В организме всех живых существ, даже одноклеточных, идут процессы формообразования. Живое строит формы в пространстве, по существу, завоевывает его соответственно определенным законам. Для построения той или иной формы нужно из разных частей составить гармоничное целое. Какие же приборы следят за дифференцировкой клеток и за целостностью всего организма? Это разные приборы или организм обходится каким-то универсальным регулировщиком пространственного расположения своих частей?

Картина развития организмов, или морфогенез, постоянно Протекает на наших глазах. И не зря видный американский биолог Э. Синнот сказал, что «морфогенез, поскольку он связан с самой отличительной чертой живого — организацией, — это перекресток, куда сходятся все пути биологических исследований… Именно здесь, вероятно, нужно ожидать в будущем самых крупных открытий».

Какие же знаки есть на этом перекрестке? Где хранится «живой прибор», следящий за тем, как генетическая запись с химического языка переводится в реальную объемную структуру, в тело?.Генетической программе в одиночку выполнить это невозможно. Да и опыты, о которых говорилось ранее, подтверждают, что не обойтись без организационного центра. Ведь в каждой клетке организма заложена одинаковая генетическая программа, в каждой клетке есть вещества, поступившие из организационного центра. А как совершается общее руководство пространственным расположением и формой клеток?

Итак, механизм морфогенеза пока не объяснен. У ученых, занимающихся его исследованием, складываются самые различные представления о формировании пространственных структур. Однако большинство из них сходятся во мнении, что пространственную организацию клеточной дифференциации только физическими и химическими методами не истолковать, что нужно обратиться к концепции морфогенетического поля, ведающего морфогенезом. Правда, не все морфогенетики принимают концепцию постоянно существующего вокруг развивающихся структур поля, которая была изложена в предыдущем разделе. Некоторые считают, что в процессе развития морфогенетические поля могут целиком заменяться на новые.

Сколько бы мы ни рассуждали о морфогенетических полях, их природа для нас остается загадочной. Но один компонент этих полей явно действует на процессы формообразования и роста у живых организмов. Таким компонентом является их электрическое поле, создаваемое живыми клетками и отдельными органами. И тут ученые пошли еще дальше: они пытаются даже имитировать слабые электрические поля и ускорять регенерацию органов и тканей с их помощью, а иногда даже менять весь формообразовательный процесс.

Так уж получилось, что человек прежде всего познакомился со свойствами электрических полей — очень эффективное действие оказывают друг на друга заряженные объекты. Поэтому уже с конца XIX века исследователи начали проверять действие электрического поля на растения и животных, особенно во время роста и развития испытуемых объектов.

Защиту окружающей среды от промышленных загрязнений называют сейчас проблемой века. И неудивительно. Кого не волнует этот вопрос, ставший одним из самых актуальных и острых! Необходим четкий контроль за состоянием окружающей среды, и, чтобы предотвратить надвигающуюся опасность, нужны приборы, которые вовремя сообщат о сдвигах экологического равновесия в природе.

Созданы совершенные аналитические приборы, которые быстро выдают количественную оценку содержания того или иного вещества в воздухе, в воде или в почве, точно определяют его концентрацию. Но с экологической точки зрения сведений только о концентрации — мало. Для контроля за состоянием окружающей среды важны биологические эффекты, которые можно провести только с помощью «живых приборов», самих организмов, реагирующих на присутствие вредных веществ. Изучаются самые различные способы использования «живых приборов».

Самый простой прием исследования токсичности воды — «рыбная проба». Наиболее чувствительных к вредным веществам рыб — окуней, ершей, форелей, щук, налимов и судаков — помещают в сетчатом садке в реку и ведут за ними наблюдение или же ставят опыты в аквариумах, заполненных загрязненной и чистой водой для контроля.

Напомню еще раз о тончайшей способности рыб определять в воде самые малые концентрации веществ и о строении аппарата, которым они производят этот анализ. Беспокойное поведение по сравнению с контрольными рыбами — это уже сигнал. Ну а если рыба начала терять ориентировку в пространстве, переворачиваться и даже гибнуть, значит, вода содержит вредные вещества в больших концентрациях.

Токсикологам часто приходится не просто исследовать загрязнение отдельных проб, а постоянно следить за состоянием воды в водоеме или же воды, поступающей со стоками в водоем. Существуют ли живые системы, которые могут вести постоянный контроль, называемый мониторингом? Мы уже познакомились с некоторыми из них: форели в лотке с фотоэлементами — один из «живых приборов» мониторинга. Однако для мониторинга, работающего в любое время суток, форели всё же неудобны. У них меняется активность в разное время суток, и при изменении погоды или после кормления активность у них также падает. Может быть, можно найти животных более удобных, которые не нуждаются в искусственном кормлении и которых можно закрепить в устройстве слежения за загрязнением, чтобы в механических или электрических системах сигнализации они своими движением не вносили помех?

С каждым годом нарастает мощность промышленных предприятий, и хотим мы этого или нет, в водоемы, пока не созданы системы замкнутого водооборота, попадает все большее количество загрязняющих веществ. На первых порах, когда промышленность еще не развивалась так бурно, гидробиоценозы сами справлялись с поступающими в водоемы загрязнениями; происходило, как говорят ученые, самоочищение водоема. Но в наш век индустриализации самоочищение можно использовать только как подсобную силу. Основную биологическую очистку сточных вод ведут с помощью искусственного биоценоза, мощность которого в биоокислении продуктов отходов производства в сотни, а то и в тысячи раз выше самоочищающей способности естественных живых сообществ.

Теперь перейдем к рассмотрению самых оригинальных «живых приборов» — организмов-индикаторов. Это, по существу, генетический прибор, ведь при определенных уровнях загрязнения могут жить только те организмы, наследственная программа которых приспособлена к экологическим сдвигам, вызываемым деятельностью человека. Живые индикаторы могут рассказать нам многое: где скапливаются вредные вещества, как они влияют на экосистему в целом и какова скорость происходящих изменений. По результатам химического и физического анализов можно узнать, в каких концентрациях скапливаются вещества, вредящие живым сообществам, но о тенденциях дальнейшего развития загрязнения и о его биологических последствиях такой анализ ничего не скажет. На помощь здесь могут прийти именно живые индикаторы.

Подошло к концу наше знакомство с «живыми приборами». Надеемся, что из этого раздела сайта читатель получил полезные сведения и понял, какие широкие перспективы открываются перед учеными, занимающимися проблемами прогноза природных явлений и биоиндикации. Многое, очень многое использует человек в своих практических целях из того, что создано природой, — способности живых существ анализировать запахи, примеси в воде и улавливать слабые энергетические взаимодействия. Но, как видно из всех глав, на большое количество вопросов исследователи «живых приборов» еще не могут дать окончательного ответа. Эти белые пятна в биологии ждут своих первооткрывателей.

© 2023
Яндекс.Метрика Top.Mail.Ru